NLO corrections to WWZ and ZZZ production at the ILC

LE Duc Ninh
ldninh@mppmu.mpg.de

Max-Planck-Institut für Physik
(Werner-Heisenberg-Institut)

CPP 2010, Sep 24, KEK.
Outline

Motivation

Calculations: $e^+ e^- \rightarrow ZZ$, WWZ

Numerical results

Conclusions
The SM

LEPEWWG 2010:

LEP direct search \((e^+e^- \rightarrow ZH, \sqrt{s} = 209\text{GeV}) \): \(M_H > 114\text{GeV} \)

CDF and D0 \(p\bar{p} \rightarrow H \rightarrow W^+W^- \): \(M_H \notin [158, 175]\text{GeV} \).

Precision EW measurements: \(M_H < 158\text{GeV} (\Delta \chi^2 = 2.7) \).
SM trilinear and quartic gauge couplings

Trilinear couplings: checking the non-abelian gauge structure.
SM trilinear and quartic gauge couplings

- Trilinear couplings: checking the non-abelian gauge structure.
- Quartic couplings: also give a window on the spontaneous symmetry breaking (SSB) mechanism.
SM trilinear and quartic gauge couplings

Trilinear couplings: checking the non-abelian gauge structure.

Quartic couplings: also give a window on the spontaneous symmetry breaking (SSB) mechanism.

Massive gauge boson scatterings \rightarrow small M_H or new physics at TeV scale.

\Rightarrow this suggests some connection between the Higgs(new physics) and quartic gauge couplings.
SM trilinear couplings: well tested at LEP.
SM trilinear couplings: well tested at LEP.

The quartic gauge couplings? Not well tested.
\[e^+ e^- \rightarrow VVZ : \text{tree diagrams} \]

- **ZZZ**: 9 diagrams, no trilinear and quartic couplings in SM
- **WWZ**: 20 diagrams, trilinear and quartic couplings contribute in SM
\[e^+ e^- \rightarrow W^+ W^- Z : \text{one-loop diagrams} \]

't Hooft-Feynman gauge, neglecting \(< eeS >\) couplings:

\[
\begin{align*}
\text{Loop Amp. (FormCalc-6.0)} & \quad ZZZ(1767) \quad WWZ(2736) \\
\text{4-point} & \quad 6.4\text{MB} \quad 6.9\text{MB} \\
\text{5-point} & \quad 384 \quad 396 \\
& \quad 64 \quad 109
\end{align*}
\]
General issues in 1-loop multi-leg calculations

\[d\sigma_{NLO} = d\sigma_{virt} + d\sigma_{real} \]
General issues in 1-loop multi-leg calculations

\[d\sigma_{NLO} = d\sigma_{virt} + d\sigma_{real} \]

Physical issues:

- At NLO, many divergences appear: UV, IR, collinear and Landau singularities (pinch singularities in massive loops, EW corrections and unstable particles).
General issues in 1-loop multi-leg calculations

\[d\sigma_{NLO} = d\sigma_{virt} + d\sigma_{real} \]

Physical issues:

- At NLO, many divergences appear: UV, IR, collinear and Landau singularities (pinch singularities in massive loops, EW corrections and unstable particles).

Technical issues:

- Amplitude expressions are very large.
- Numerical instabilities.
One-loop Renormalisation

UV-divergence is regularised by the means of renormalisation.

- **Independent parameters (CKM = 1):** e, m_f, M_W, M_Z, M_H
- **Renormalized parameters:** $e_0 = Z_e e, M_0 = M + \delta M$
- **Field renormalisation:** $\phi^0_i = (\delta_{ij} + \delta Z_{ij}^\phi/2)\phi_i$
One-loop Renormalisation

- UV-divergence is regularised by the means of renormalisation.
- **Independent parameters** (CKM = 1): e, m_f, M_W, M_Z, M_H
- **Renormalized parameters**: $e_0 = Z_e e, M_0 = M + \delta M$
- **Field renormalisation**: $\phi_i^0 = (\delta_{ij} + \delta Z_{ij}^\phi/2) \phi_i$
- **On-shell scheme**:
 - All physical masses are the pole positions of the propagator.
 - Field renormalisation: the pole residue is equal to 1, no mixing between on-shell physical fields.
 - \Rightarrow The matrix δZ_{ij}^ϕ is, in general, real (CP conserving) but not orthogonal ($\delta Z_{ij}^\phi \neq \delta Z_{ji}^\phi$).
One-loop Renormalisation

UV-divergence is regularised by the means of renormalisation.

- Independent parameters (CKM = 1): \(e, m_f, M_W, M_Z, M_H \)
- Renormalized parameters: \(e_0 = Z_e e, M_0 = M + \delta M \)
- Field renormalisation: \(\phi_i^0 = (\delta_{ij} + \delta Z_{ij}^\phi/2) \phi_i \)
- On-shell scheme:
 - All physical masses are the pole positions of the propagator.
 - Field renormalisation: the pole residue is equal to 1, no mixing between on-shell physical fields.
 - \(\sim \) The matrix \(\delta Z_{ij}^\phi \) is, in general, real (CP conserving) but not orthogonal \((\delta Z_{ij}^\phi \neq \delta Z_{ji}^\phi) \).

For the SM, the OS scheme works so well because all the physical masses are independent parameters and hence can be renormalized as the pole positions of the propagator.
This is not true for the MSSM \((M_{H^\pm}^2 = M_A^2 + M_W^2) \).
Loop integrals and numerical instabilities

\[k_i = \sum_{j=1}^{i-1} p_j, \quad i = 1, 2, 3, \ldots \]

- \(k_i = \sum_{j=1}^{i-1} p_j, \quad i = 1, 2, 3, \ldots \)
- \(\det(G) = \det(2k_i \cdot k_j) \): Gram determinant
- \(\det(Y) = \det(m_i^2 + m_j^2 - (k_i - k_j)^2) \): Landau determinant
Loop integrals and numerical instabilities

\[k_i = \sum_{j=1}^{i-1} p_j, \quad i = 1, 2, 3, \ldots \]

\[\text{det}(G) = \text{det}(2k_i \cdot k_j): \text{Gram determinant} \]

\[\text{det}(Y) = \text{det}(m_i^2 + m_j^2 - (k_i - k_j)^2): \text{Landau determinant} \]

5pt integrals are reduced to 4pts \cite{Denner:2002an} \[E_0 = -\sum_{i=1}^{5} \frac{\text{det}(Y_i)}{\text{det}(Y)} D_0(i) \]
Loop integrals and numerical instabilities

\[k_i = \sum_{j=1}^{i-1} p_j, \quad i = 1, 2, 3, \ldots \]

- \(\det(G) = \det(2k_i \cdot k_j) \): Gram determinant
- \(\det(Y) = \det(m_i^2 + m_j^2 - (k_i - k_j)^2) \): Landau determinant

5pt integrals are reduced to 4pts \cite{Denner:2002jk}

\[E_0 = -\sum_{i=1}^{5} \frac{\det(Y_i)}{\det(Y)} D_0(i) \]

Tensor 4pt integrals up to rank 4: Passarino-Veltman reduction

\[D_{ijkl} = f(p_i, m_i) / \det(G)^4 \]

\[\implies \text{numerical instabilities occur when } \det(G) \text{ is small (close to PS boundary).} \]
Loop integrals and numerical instabilities

\[k_i = \sum_{j=1}^{i-1} p_j, \quad i = 1, 2, 3, \ldots \]

- \(\det(G) = \det(2k_i \cdot k_j) \): Gram determinant
- \(\det(Y) = \det(m_i^2 + m_j^2 - (k_i - k_j)^2) \): Landau determinant

5pt integrals are reduced to 4pts \(\text{Denner and Dittmaier 2002} \)

\[E_0 = -\sum_{i=1}^{5} \frac{\det(Y_i)}{\det(Y)} D_0(i) \]

Tensor 4pt integrals up to rank 4: Passarino-Veltman reduction

\[D_{ijkl} = f(p_i, m_i) / \det(G)^4 \]

\(\implies \) numerical instabilities occur when \(\det(G) \) is small (close to PS boundary).

Our solutions: small DetG expansion or using quadruple precision (loop library only, the results become stable, 6 times slower).
Loop integrals and numerical instabilities

\[k_i = \sum_{j=1}^{i-1} p_j, \quad i = 1, 2, 3, \ldots \]

\[\det(G) = \det(2k_i \cdot k_j) : \text{Gram determinant} \]

\[\det(Y) = \det(m_i^2 + m_j^2 - (k_i - k_j)^2) : \text{Landau determinant} \]

5pt integrals are reduced to 4pts [Denner and Dittmaier 2002]

\[E_0 = - \sum_{i=1}^{5} \frac{\det(Y_i)}{\det(Y)} D_0(i) \]

Tensor 4pt integrals up to rank 4: Passarino-Veltman reduction

\[D_{ijkl} = f(p_i, m_i) / \det(G)^4 \]

\[\implies \text{numerical instabilities occur when } \det(G) \text{ is small (close to PS boundary).} \]

Our solutions: small DetG expansion or using quadruple precision (loop library only, the results become stable, 6 times slower).

Scalar 4pt integrals can also have numerical cancellation (observed in WWZ):

- Using different methods (projective transformation, 't Hooft and Veltman 1979, is good for \(m_i = 0 \); direct calculation for \(p_j^2 = 0 \)).
- Using quadruple precision helps.
Real correction

\[d\sigma_{1\text{-loop}}^{e^+e^\to VVZ} = d\sigma_{\text{virt}}^{e^+e^\to VVZ} + d\sigma_{\text{real}}^{e^+e^\to VVZ\gamma} \]

The virtual part contains both soft and collinear divergences. All these singularities are cancelled by adding the real photon radiation process.
Real correction

\[d\sigma^{e^+e^-\rightarrow VVZ}_{1-loop} = d\sigma^{e^+e^-\rightarrow VVZ}_{virt} + d\sigma^{e^+e^-\rightarrow VVZ\gamma}_{real} \]

The virtual part contains both soft and collinear divergences. All these singularities are cancelled by adding the real photon radiation process.

All singularities in the real amplitude can be factorised, \(P_{ff}(y) = (1 + y^2)/(1 - y) \):

\[
\sum_{\lambda\gamma} |M_1|^2 \xrightarrow{k\to 0} - \sum_{f,f'} Q_f \sigma_f Q_{f'} \sigma_{f'} e^2 \frac{p_fp_{f'}}{(p_fk)(p_{f'}k)} |M_0|^2 ,
\]

\[
\sum_{\lambda\gamma} |M_1|^2 \xrightarrow{p_i k\to 0} Q_i^2 e^2 \frac{1}{p_i k} \left[P_{ff}(z_i) - \frac{m_i^2}{p_i k} \right] |M_0(p_i + k)|^2 ,
\]

\[
\sum_{\lambda\gamma} |M_1|^2 \xrightarrow{p_a k\to 0} Q_a^2 e^2 \frac{1}{x_a (p_a k)} \left[P_{ff}(x_a) - \frac{x_a m_a^2}{p_a k} \right] |M_0(x_a p_a)|^2 .
\]
Real correction

\[d\sigma_{1\text{-loop}}^{e^+e^\to VVZ} = d\sigma_{\text{virt}}^{e^+e^\to VVZ} + d\sigma_{\text{real}}^{e^+e^\to VVZ\gamma} \]

The virtual part contains both soft and collinear divergences. All these singularities are cancelled by adding the real photon radiation process.

All singularities in the real amplitude can be factorised, \(P_{ff}(y) = (1 + y^2)/(1 - y) \):

\[
\sum_{\lambda_1} |M_1|^2 \sim_{k\to 0} - \sum_{f,f'} Q_f \sigma_f Q_{f'} \sigma_{f'} e^2 \frac{p_fp_{f'}}{(p_f k)(p_{f'} k)} |M_0|^2 ,
\]

\[
\sum_{\lambda_1} |M_1|^2 \sim_{p_i k\to 0} Q_i^2 e^2 \frac{1}{p_i k} \left[P_{ff}(z_i) - \frac{m_i^2}{p_i k} \right] |M_0(p_i + k)|^2 ,
\]

\[
\sum_{\lambda_1} |M_1|^2 \sim_{p_a k\to 0} Q_a^2 e^2 \frac{1}{x_a(p_a k)} \left[P_{ff}(x_a) - \frac{x_a m_a^2}{p_a k} \right] |M_0(x_a p_a)|^2 .
\]

After adding the virtual and real corrections the result is still collinear singular. This singularity comes from the initial state radiation part, in the form \(\alpha \ln(s/m_e^2) \) after int.
Real correction

\[d\sigma_{1-\text{loop}}^{e^+e^-\rightarrow V V Z} = d\sigma_{\text{virt}}^{e^+e^-\rightarrow V V Z} + d\sigma_{\text{real}}^{e^+e^-\rightarrow V V Z\gamma} \]

- The virtual part contains both soft and collinear divergences. All these singularities are cancelled by adding the real photon radiation process.
- All singularities in the real amplitude can be factorised, \(P_{ff}(y) = (1 + y^2)/(1 - y) \):
 \[
 \sum_{\lambda\gamma} |M_1|^2 \quad \overset{k\rightarrow 0}{\sim} \quad - \sum_{f,f'} Q_f \sigma_f Q_{f'} \sigma_{f'} e^2 \frac{p_fp_{f'}}{(p_fk)(p_{f'}k)} |M_0|^2,
 \]
 \[
 \sum_{\lambda\gamma} |M_1|^2 \quad \overset{p_i k\rightarrow 0}{\sim} \quad Q_i^2 e^2 \frac{1}{p_i k} \left[P_{ff}(z_i) - \frac{m_i^2}{p_i k} \right] |M_0(p_i + k)|^2,
 \]
 \[
 \sum_{\lambda\gamma} |M_1|^2 \quad \overset{p_a k\rightarrow 0}{\sim} \quad Q_a^2 e^2 \frac{1}{x_a(p_a k)} \left[P_{ff}(x_a) - \frac{x_am_a^2}{p_a k} \right] |M_0(x_a p_a)|^2.
 \]
- After adding the virtual and real corrections the result is still collinear singular. This singularity comes from the initial state radiation part, in the form \(\alpha \ln(s/m_c^2) \) after int.
- Two ways to calculate: phase space slicing and subtraction methods.
Real correction: phase space slicing

- Real correction is cutoff-independent.
- Factorization condition: δ_s and δ_c are sufficiently small. And $\delta_c \gg 2m_e^2/s$ to use the collinear integration formula.
Real correction: dipole subtraction

\[
\sigma_{\text{real}} = \int_4 (d\sigma_{\text{real}} - d\sigma_{\text{sub}}) + \int_4 d\sigma_{\text{sub}}.
\]

The subtraction function should be:

- the same as the real function \(d\sigma_{\text{real}}\) in the singular limits.
- simple enough so that it can be analytically integrated over the singular region.

The dipole subtraction method Catani, Seymour, Dittmaier ...:

\[
\int_4 d\sigma_{\text{sub}} = -\frac{\alpha}{2\pi} \int dx \sum_{i \neq j} Q_i Q_j G_{ij}(x) \int_3 d\sigma_{\text{Born}} + \sigma_{\text{endpoint}},
\]

\[
\sigma_{\text{endpoint}} = -\frac{\alpha}{2\pi} \int_3 d\sigma_{\text{Born}} \sum_{i \neq j} Q_i Q_j G_{ij}.
\]

- The subtraction function is a sum of many dipole terms.
- The endpoint contribution contains all the soft and collinear singularities of the virtual part, with the opposite signs:

\[
\sigma_{\text{weak}} = \sigma_{\text{virt}} + \sigma_{\text{endpoint}}: \text{soft and coll. finite}
\]
Real correction: dipole vs. slicing

Slicing: simple, easy to implement, large integration error. We use this to cross check the results.
Tricky point: when one decreases the error, the cut-offs must also be reduced.

Dipole: subtraction function is quite complicated (not so easy to implement), the integration error is typically 10 times smaller than slicing’s, no cut-off dependence.
Tricky point: misbinning effect in histograms.

Calculating real correction is more time-consuming than getting the virtual part.
Amplitude factorization

Helicity loop for $e^+e^- \rightarrow W^+W^-Z$:

do $\lambda_{e^-} = -1, 1$
 do $\lambda_{e^+} = -1, 1$
 do $\lambda_{W^-} = -1, 0, 1$
 do $\lambda_{W^+} = -1, 0, 1$
 do $\lambda_Z = -1, 0, 1$
 call $A(\lambda_{e^-}, \lambda_{e^+}, \lambda_{W^-}, \lambda_{W^+}, \lambda_Z)$
 enddo
 enddo
 enddo
 enddo
enddo

...
Amplitude factorization

Helicity loop for $e^+ e^- \rightarrow W^+ W^- Z$:

\[
\begin{align*}
\text{do } & \lambda_{e^-} = -1, 1 \\
\text{do } & \lambda_{e^+} = -1, 1 \\
\text{do } & \lambda_{W^-} = -1, 0, 1 \\
\text{do } & \lambda_{W^+} = -1, 0, 1 \\
\text{do } & \lambda_Z = -1, 0, 1 \\
\text{call } & A(\lambda_{e^-}, \lambda_{e^+}, \lambda_{W^-}, \lambda_{W^+}, \lambda_Z) \\
\text{enddo}
\end{align*}
\]

...

Factorization:

\[
A = Const \times SME(\lambda_i, p_i) \times FF(p_i, m_j).
\]
Amplitude factorization

Helicity loop for $e^+ e^- \rightarrow W^+ W^- Z$:

\begin{verbatim}
do $\lambda_{e^-} = -1, 1$
do $\lambda_{e^+} = -1, 1$
do $\lambda_{W^-} = -1, 0, 1$
do $\lambda_{W^+} = -1, 0, 1$
do $\lambda_{Z} = -1, 0, 1$

 call $A(\lambda_{e^-}, \lambda_{e^+}, \lambda_{W^-}, \lambda_{W^+}, \lambda_{Z})$
endo

...

Factorization:

\[A = Const \times SME(\lambda_i, p_i) \times FF(p_i, m_j). \]

\[FF(p_i, m_j) \]: a linear combination of loop integrals, very large expressions (FORM complains!). FFs appear several times and are put in the common block.
Amplitude factorization

Helicity loop for $e^+e^- \rightarrow W^+W^-Z$:

\[
\begin{align*}
\text{do } \lambda_{e^-} &= -1, 1 \\
\text{do } \lambda_{e^+} &= -1, 1 \\
\text{do } \lambda_{W^-} &= -1, 0, 1 \\
\text{do } \lambda_{W^+} &= -1, 0, 1 \\
\text{do } \lambda_{Z} &= -1, 0, 1 \\
\text{call } \mathcal{A}(\lambda_{e^-}, \lambda_{e^+}, \lambda_{W^-}, \lambda_{W^+}, \lambda_{Z}) \\
\text{enddo}
\end{align*}
\]

... Factorization:

\[
\mathcal{A} = \text{Const} \times SME(\lambda_i, p_i) \times FF(p_i, m_j).
\]

- $FF(p_i, m_j)$: a linear combination of loop integrals, very large expressions (\textsc{form} complains!). FFs appear several times and are put in the common block.

- Solution: divide into small groups of Feynman diagrams.
Amplitude factorization

Helicity loop for $e^+e^- \rightarrow W^+W^-Z$:

do $\lambda_{e^-} = -1, 1$
 do $\lambda_{e^+} = -1, 1$
 do $\lambda_{W^-} = -1, 0, 1$
 do $\lambda_{W^+} = -1, 0, 1$
 do $\lambda_Z = -1, 0, 1$
 call $\mathcal{A}(\lambda_{e^-}, \lambda_{e^+}, \lambda_{W^-}, \lambda_{W^+}, \lambda_Z)$
 enddo
 enddo
 enddo
 enddo
 enddo
enddo

Factorization:

$$\mathcal{A} = Const \times SME(\lambda_i, p_i) \times FF(p_i, m_j).$$

- $FF(p_i, m_j)$: a linear combination of loop integrals, very large expressions (FORM complains!). FFs appear several times and are put in the common block.

- Solution: divide into small groups of Feynman diagrams.

- The calculation is about 2 times faster than the normal FormCalc-6.0 (already optimized by introducing many abbreviations).
Checks on the results

- Non-linear gauge (NLG) invariance check: tree and one-loop squared amplitude level. We use SloopS (Baro, Boudjema and Semenov; FeynArts+NLG).

- The results should be UV and IR finite.

- Loop integrals: tricky part, use different codes (methods) to cross check. LoopTools/FF (van Oldenborgh, Hahn), OneLOop (van Hameren), D0C (D. T. Nhun, LDN; D0 with complex masses; adapted version in LoopTools-2.n, \(n > 3 \)). Link: http://wwwth.mppmu.mpg.de/members/ldninh/index.html

- Phase space integration: (parallel) BASES, VEGAS.

- Two independent calculations (codes): Fortran 77, C++; generated with the help of FeynArts-3.4, FormCalc-6.0 (Math + FORM).

- Comparisons with other groups (more later).
NLG Check and numerical instability

NLG fixing Lagrangian (Boudjema, Chopin 1995):

\[\mathcal{L}_{GF} = -\frac{1}{\xi_W} |(\partial_\mu - ie\tilde{\alpha} A_\mu - igc_W \tilde{\beta} Z_\mu)W^{\mu+} + \xi_W \frac{g}{2} (v + \tilde{\delta} H + i\tilde{\kappa} \chi_3) \chi^+|^2 \]

\[- \frac{1}{2\xi_Z} (\partial . Z + \xi_Z \frac{g}{2c_W} (v + \tilde{\epsilon} H) \chi_3)^2 - \frac{1}{2\xi_A} (\partial . A)^2 . \]

<table>
<thead>
<tr>
<th>(\tilde{\alpha}, \tilde{\beta})</th>
<th>ZZZ</th>
<th>WWZ(1)</th>
<th>WWZ(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>-7.8077709362570481E-4</td>
<td>-6.3768793214220439E-2</td>
<td>5.588092511112647047819820306727217E-2</td>
</tr>
<tr>
<td>(1,0)</td>
<td>-7.8077709362570731E-4</td>
<td>-6.3767676883630841E-2</td>
<td>5.588092511111034991142696308013526E-2</td>
</tr>
<tr>
<td>(0,1)</td>
<td>-7.8077709361534624E-4</td>
<td>-6.3772289648961160E-2</td>
<td>5.588092511114608451016661052972381E-2</td>
</tr>
</tbody>
</table>

- **ZZZ**: at least 10 digit agreement with double precision (DP).
- **WWZ**: 4 digits with DP, 12 digits with quadruple precision.

\[\xrightarrow{\sim} \] This is an indication of numerical instability.
Comparisons for ZZZ

<table>
<thead>
<tr>
<th>\sqrt{s} [GeV]</th>
<th>σ_{Born} [fb]</th>
<th>δ_{full} [%]</th>
<th>σ_{Born} [fb]</th>
<th>δ_{full} [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>Ref. [1]</td>
<td>0.58696</td>
<td>-15.79</td>
<td>0.68422</td>
</tr>
<tr>
<td></td>
<td>This work</td>
<td>0.586955(2)</td>
<td>-15.850(1)</td>
<td>0.684209(2)</td>
</tr>
<tr>
<td>400</td>
<td>Ref. [1]</td>
<td>0.83409</td>
<td>-11.75</td>
<td>0.9375</td>
</tr>
<tr>
<td></td>
<td>This work</td>
<td>0.834083(4)</td>
<td>-11.765(2)</td>
<td>0.937484(4)</td>
</tr>
<tr>
<td>450</td>
<td>Ref. [1]</td>
<td>0.95792</td>
<td>-9.79</td>
<td>1.05294</td>
</tr>
<tr>
<td></td>
<td>This work</td>
<td>0.957904(5)</td>
<td>-9.763(3)</td>
<td>1.052917(5)</td>
</tr>
<tr>
<td>500</td>
<td>Ref. [1]</td>
<td>1.01384</td>
<td>-8.70</td>
<td>1.09754</td>
</tr>
<tr>
<td></td>
<td>This work</td>
<td>1.013806(6)</td>
<td>-8.682(4)</td>
<td>1.097440(7)</td>
</tr>
<tr>
<td>600</td>
<td>Ref. [1]</td>
<td>1.03052</td>
<td>-7.77</td>
<td>1.09370</td>
</tr>
<tr>
<td></td>
<td>This work</td>
<td>1.030489(9)</td>
<td>-7.714(6)</td>
<td>1.093668(9)</td>
</tr>
<tr>
<td>1000</td>
<td>Ref. [1]</td>
<td>0.83892</td>
<td>-7.94</td>
<td>0.86366</td>
</tr>
<tr>
<td></td>
<td>This work</td>
<td>0.83887(2)</td>
<td>-7.86(2)</td>
<td>0.86362(2)</td>
</tr>
</tbody>
</table>

Comparisons for WWZ

$M_H = 120$ GeV

<table>
<thead>
<tr>
<th>\sqrt{s} [TeV]</th>
<th>σ_{Born} [fb]</th>
<th>$\Delta\sigma_{NLO}$ [fb]</th>
<th>σ_{Born} [fb]</th>
<th>$\Delta\sigma_{NLO}$ [fb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>Ref. [2ab] 3.6216(2)</td>
<td>-0.683(2)</td>
<td>3.8856(2)</td>
<td>-0.694(2)</td>
</tr>
<tr>
<td></td>
<td>This work 3.62165(5)</td>
<td>-0.6901(3)</td>
<td>3.88558(5)</td>
<td>-0.7010(3)</td>
</tr>
<tr>
<td>0.5</td>
<td>Ref. [2ab] 44.026(5)</td>
<td>-3.03(6)</td>
<td>44.303(5)</td>
<td>-2.89(6)</td>
</tr>
<tr>
<td></td>
<td>This work 44.0235(10)</td>
<td>-3.107(3)</td>
<td>44.301(1)</td>
<td>-2.949(3)</td>
</tr>
<tr>
<td>0.8</td>
<td>Ref. [2a] 64.35(1)</td>
<td>-3.48(7)</td>
<td>64.50(1)</td>
<td>-3.57(9)</td>
</tr>
<tr>
<td></td>
<td>Ref. [2b] 64.35(1)</td>
<td>-3.48(7)</td>
<td>64.50(1)</td>
<td>-3.11(8)</td>
</tr>
<tr>
<td></td>
<td>This work 64.345(4)</td>
<td>-3.466(8)</td>
<td>64.488(4)</td>
<td>-3.250(8)</td>
</tr>
<tr>
<td>1.0</td>
<td>Ref. [2a] 65.42(1)</td>
<td>-3.74(9)</td>
<td>65.51(1)</td>
<td>-3.90(9)</td>
</tr>
<tr>
<td></td>
<td>Ref. [2b] 65.42(1)</td>
<td>-3.74(9)</td>
<td>65.51(1)</td>
<td>-3.40(9)</td>
</tr>
<tr>
<td></td>
<td>This work 65.401(5)</td>
<td>-3.650(9)</td>
<td>65.499(5)</td>
<td>-3.440(10)</td>
</tr>
</tbody>
</table>

\[e^+e^- \rightarrow ZZZ: \text{Total Xsection} \]

- **Total Xsection peak about 1fb is at** \(\sqrt{s} \approx 550 \text{GeV} \).

- **The weak correction goes from** \(-12\%\) **to** \(-18\%\) **when** \(\sqrt{s} \) **increases from 500GeV to 1TeV.**

Input parameters:

\[\alpha_{G\mu} = \sqrt{2}G_\mu \frac{s_W^2}{M_W^2} / \pi = \alpha(0)(1 + \Delta r) \]

\[\delta Z_e^{G\mu} = \delta Z_e - \frac{1}{2}(\Delta r)_{1-\text{loop}}. \]
\[e^+e^- \rightarrow W^+W^-Z: \text{Total Xsection} \]

![Graph showing total cross-section as a function of \(\sqrt{s} \)]

- **Total Xsection peak** about 50fb (50 times larger than \(\sigma_{ZZZ} \)) is at \(\sqrt{s} \approx 900 \text{GeV} \).
- **Large Sudakov corrections** at high energies: \(\alpha \log(M_W^2/s), \alpha \log^2(M_W^2/s) \).
- The weak correction goes from \(-7\%\) to \(-18\%\) when \(\sqrt{s} \) increases from 500GeV to 1.5TeV.
Quite small corrections (about -10%) at small GeV. At large GeV, large corrections (-50%) due to the hard photon effect [dominant contribution comes from the low-energy photon region which corresponds to large p_T^Z and large M_{WW}.]

\[e^+ e^- \rightarrow W^+ W^- Z: \text{Distributions (I)} \]
NLO corrections show new structures, which cannot be explained by an overall scale factor.
Conclusions

- Tri-boson production (ZZZ and WWZ) at the ILC is an important process to test the quartic gauge couplings and the Higgs mechanism. This is the first step towards the understanding of SSB mechanism if the LHC cannot find the Higgs.

- The results indicate that EW corrections are significant and have to be taken into account when doing analysis.

- Our codes (Fortran 77 and C++) can be provided to future experimentalists as a complete library for extensive studies. This can be faster than general-purpose NLO generators.