1-loop effects of MSSM particles in Higgs productions at the ILC

Yusaku Kouda, Tadashi Kon, Masato Jimbo ^A, Yoshimasa Kurihara^B, Tadashi Ishikawa^B, Kiyoshi Kato^C, and Masaaki Kuroda^D,

Seikei Univ., Chiba University of Commerce ^A, KEK^B, Kogakuin Univ.^C, Meijigakuin Univ.^D

CPP2016 10 October 2016 in Hayama

- Introduction(What)
- How(GRACE/SUSY)
- Results
- Summary

Introduction

Zh production

W fusion

Graph 7

e

Is the 1-loop effect of virtual MSSM particles statistically significant?

٧e

h

 $\overline{\nu}_e$

Selection of sets (Zh)

we have taken into account

Higgs mass	(m _h (exp)=125.09 ± 0.24 GeV)
B physics constraint	(b→sγ,B _s →μμ)
muon g-2 constraint	$a_{\mu}(exp) - a_{\mu}(SM) = (25.9 \pm 8.1) \times 10^{-10}$
	SuSpect2 (A.Djouadi, J.Kneur and G.Moultaka)
DM thermal relic density	(Planck data of Ωh^2)
	micrOMEGAs (G. Belanger, F. Boudjema, A. Pukhov, A. Semenov)

LHC direct search of sparticles

	<mark>light</mark> stop ≅ 300GeV	<mark>heavy</mark> stop ≃1000GeV
The DM abundance is explained by Co-annihilation of stau and LSP	set 1	set 2
The DM abundance is explained by Co-annihilation of stop and LSP	set 3	inconsistent with muon g-2 (LSP is too heavy)

arxiv:1609.07868[hep-ph] Y. Kouda, T. Kon, Y. Kurihara, T. Ishikawa, M. Jimbo, K. Kato and M. Kuroda

Selection of sets (W fusion)

Signal higgs + missing

SM
$$e^+e^- \rightarrow v\overline{v}h$$

MSSM
$$e^+e^- \rightarrow \widetilde{\chi}^0_1 \widetilde{\chi}^0_1 h$$

(This study does not focus on this

We have selected the set neutralino pair is not produced.

 $(\widetilde{\chi}_1^0 \ge 500 \text{GeV})$

We pay attention to the case

"only the effects of virtual MSSM particles are statistical significant"

the set (W fusion)

					set	10	
Higgs (consistent with the obser	rved mass)		_[h	Н	А	H^{+}
	/			125.2	2000	2000	2002
				$\tilde{\chi}_1^+$	$ ilde{\chi}_2^+$		
				583.3	1376		
				$ ilde{\chi}_1^0$	$ ilde{\chi}^0_2$	$ ilde{\chi}^0_3$	$ ilde{\chi}_4^0$
ElectroWeak particles			-	552.8	588.2	614.8	1376
(Only these contribution				$\widetilde{\ell}_1$	$\widetilde{\ell}_2$	$\widetilde{ u}_\ell$	
don't explain muon g-2)				601.5	651.7	646.9	
				$ ilde{ au}_1$	$ ilde{ au}_2$	$\widetilde{ u}_{ au}$	
				589.5	662.5	646.9	
				\tilde{u}_1	\tilde{u}_2	\tilde{d}_1	\tilde{d}_2
				5000	5000	4800	5000
QCD particles				\tilde{t}_1	$ ilde{t}_2$	\widetilde{b}_1	\tilde{b}_2
				1798	2508	2200	2501
				$ heta_{ au}$	$ heta_b$	$ heta_t$	
				1.164	1.539	1.481	
			[M_1	M_2	M_3	
				585.0	1370	2500	
•				μ =	=586,	$\tan\beta=3$	0 13

• How(GRACE/SUSY) (before and after the discovery of Higgs)

GRACE/SUSY

 \bigstar The system that can automatically calculate cross sections or decay widths in SM and MSSM

* GRACE/SUSY [tree version (opened to public)]
Comput.Phys.Commun.153:106-134,2003 download : http://minami-home.kek.jp/

* GRACE/SUSY-loop [1-loop version(unopened to public)] Phys.Rev.D75:113002,2007

Feynman diagrams
 Physical amplitudes
 Phase space Integration
 Event generation
 Various Self-checks

We can check the validity of numerical calculation

GRACE (before the discovery of higgs)

SM full 1-loop correction of $e^+e^- \rightarrow v\overline{v}h$ have calculated with using GRACE in 2003

G. Bélanger , F. Boudjema , J. Fujimoto , T. Ishikawa , T. Kaneko, K. Kato, Y. Shimizu, Physics Letters B 559 (2003) 252-262

Denner et al., NPB660(2003)289

Before the discovery of Higgs, GRACE have been used with Higgs mass as a free parameter.

•Higgs mass was final free parameter in SM.

GRACE (after the discovery of Higgs)

After the discovery of Higgs, GRACE is used with Higgs mass as a fixed parameter for the search of MSSM that have many free parameters. For example, in this way,

step1, we can generate all diagrams.

 $e^+e^- \rightarrow v_e \overline{v}_e h$ full 1-loop MSSM diagrams • • • 13793 diagrams

step 2, we can select diagrams.

By selecting diagrams that WW fusion in internal line, they are reduced to 239 diagrams

Results (ZH,W fusion)

Angular distribution(1-loop level)

 \Box θ is the Z generation angle.

□ The 1-loop correction for the tree level is negative.

□ The correction of MSSM for SM is positive.

angular distribution($\sqrt{s}=250 \text{ GeV}$)

MSSM 1-loop effect

δ <mark>SUS</mark>Υ (%)

 We have defined the correction ratio δ
 We have compared with the statistical error (assumed the luminosity that planed in the ILC).

H.baer et al, The International Linear Collider Technical Design Report - Volume 2: Physics (2013)

■ The 1-loop effect is 11% in the entire region.

The 1-loop effect for SM is larger than the error.

The difference among sets is larger than the error.

 $d\sigma_{SUSY1-loop}$ $d\sigma_{SM}$ dcosθ dcosθ δ susy = $d\sigma_{tree}$ dcosθ correction ratio ($\sqrt{s}=250 \text{ GeV}$) Ldt = 250 fb0.011 set 1 set 2 0.01 set 3 $\cos\theta$

Energy distribution (1-loop level)

- 1-loop correction for the tree level is negative.
- MSSM correction for SM is positive.
- The correction of SM total cross section for the tree level is -37%.
- The correction of MSSM total cross section for the tree level is -19%.

dσ/dEh (fb/GeV)

MSSM 1-loop effect

- \square We have defined the correction ratio δ .
- □ We have compaired with Monte Carlo integration error.
- □ The correction ratio is 15% in the entire region.
- □ The 1 loop effect is larger than the error.

preliminary

summary

summary

- We select sets that consistent with Higgs mass, B physics,
 DM relic density, LHC direct search of sparticles, and muon g-2(in Zh)
- We have probed statistical significance at the ILC.
- In W fusion calculation, We have considered a set neutralino is not produced, and investigate whether only one loop effect is statistically significant.

conclusion

GRACE/SUSY is very Useful for the search of MSSM particles!!

back up

Higgs-Gauge-boson-Gauge-boson

$$L = + gM_{W} [\cos(\alpha - \beta)H^{0} - \sin(\alpha - \beta)h^{0}]W_{\mu}^{+}W^{-\mu}$$

+ $\frac{g_{Z}}{2}M_{Z} [\cos(\alpha - \beta)H^{0} - \sin(\alpha - \beta)h^{0}]Z_{\mu}Z^{\mu}.$

$$\begin{split} d\sigma^{\rm M,G}_{\rm L\&S}(k_c) &\equiv d\sigma^{\rm M,G}_{\rm virtual} + d\sigma^{\rm G}_{\rm soft} & \quad \text{The part compared in the } \delta \text{susy} \\ d\sigma^{\rm M,G}_{\rm 1loop} &\equiv \boxed{d\sigma_{tree}} + d\sigma_{\rm L\&S}(k_c)^{\rm M,G} + \underbrace{\int_{k_c} \frac{d\sigma^{\rm G}_{\rm hard}}{dE_{\gamma}} dE_{\gamma}}_{\text{canceled each other, because they}} \end{split}$$

are common in SM and MSSM

Classification of sets

Sellection of sets (Zh)

we take into account

	Higgs mass B physics constraint Muon g-2 constraint DM thermal relic density LHC direct search of sparticle	$(m_h(exp)=125.09 \pm 0.24 \text{ GeV})$ $(b \rightarrow s\gamma, B_s \rightarrow \mu\mu)$ $a_\mu(exp) - a_\mu(SM) = (25.9 \pm 8.1) \times 10^{-10}$ (Planck data of Ωh^2) les				
Our (No	sets have almost pure Bino DM mix with Higgsino or Wino)		light stop $\cong 300 GeV$	heavy stop $\approx 1000 GeV$		
Ther are o (sfer $\widetilde{\chi}^0_{i}$	n, the stop1 or the stau1 mass constrained mion co-annihilation scenario) G. Bélanger LAPTH-Annecy	The DM abundance is explained by Co-annihilation of stau and LSP	set 1	set 2		
$\widetilde{ au}_{L}$	γ τ	The DM abundance is explained by Co-annihilation of stop and LSP	set 3	inconsistent with muon g-2 (LSP is too heavy		