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Derivation of FE from recurrence relations

FE from recurrence relations

Functional equations (FE) for Feynman integrals were proposed in O.V.T.
Phys.Lett. B670 (2008) 67.
Feynman integrals satisfy recurrence relations which can be written as∑

j

Qj Ij ,n =
∑
k,r<n

Rk,r Ik,r

where Qj ,Rk are polynomials in masses, scalar products of external
momenta, d , and powers of propagators. Ik,r - are integrals with r external
lines. In recurrence relations some integrals are more complicated than the
others: they have more arguments than the others.

General method for deriving functional equations:

By choosing kinematic variables, masses, indices of propagators remove
most complicated integrals, i.e. impose conditions :

Qj = 0

keeping at least some other coefficients Rk 6= 0.
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Derivation of FE from recurrence relations

Introduction

Example: one-loop n-point integrals

Integrals I
(d)
n satisfy generalized recurrence relations O.T. in

Phys.Rev.D54 (1996) p.6479

Gn−1νj j
+I

(d+2)
n − (∂j∆n)I

(d)
n =

n∑
k=1

(∂j∂k∆n)k−I
(d)
n ,

where j± shifts indices νj → νj ± 1, ∂j ≡ ∂
∂m2

j
,

Gn−1 = −2n

∣∣∣∣∣∣∣
p1p1 p1p2 . . . p1pn−1

...
...

. . .
...

p1pn−1 p2pn−1 . . . pn−1pn−1

∣∣∣∣∣∣∣ ,

∆n =

∣∣∣∣∣∣∣
Y11 Y12 . . . Y1n

...
...

. . .
...

Y1n Y2n . . . Ynn

∣∣∣∣∣∣∣ , Yij = m2
i +m2

j −pij , pij = (pi − pj)
2 ,
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Derivation of FE from recurrence relations

One-loop propagator type integral

At n = 3, j = 1, m2
3 = 0, imposing conditions G2 = 0, ∆3 = 0 we get

I
(d)
2 (m2

1,m
2
2, p12) =

p12 + m2
1 −m2

2 − α12

2p12
I
(d)
2 (m2

1, 0, s13)

+
p12 −m2

1 + m2
2 + α12

2p12
I
(d)
2 (0,m2

2, s23)

where

s13 =
∆12 + 2p12m

2
1 − (p12 + m2

1 −m2
2)α12

2p12
,

s23 =
∆12 + 2p12m

2
2 + (p12 −m2

1 + m2
2)α12

2p12
,

α12 = ±
√

∆12.

∆ij = p2ij + m4
i + m4

j − 2pijm
2
i − 2pijm

2
j − 2m2

i m
2
j .

Integral with arbitrary masses and momentum can be expressed in terms of
integrals with one propagator massless !!!
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Derivation of FE from recurrence relations

One-loop vertex type integral

At n = 4, j = 1, m4 = 0, imposing conditions G3 = 0, ∆4 = 0 we get

I
(d)
3 (m2

1,m
2
2,m

2
3, s23, s13, s12) =

s13 + m2
3 −m2

1 + α13

2s13

× I
(d)
3 (m2

2,m
2
3, 0, s

(13)
34 , s24(m2

1,m
2
3, s23, s13, s12), s23)

+
s13 −m2

3 + m2
1 − α13

2s13

× I
(d)
3 (m2

1,m
2
2, 0, s24(m2

1,m
2
3, s23, s13, s12), s

(13)
14 , s12)

Again as it was for integral I
(d)
2 integral I

(d)
3 with arbitrary arguments can

be expressed in terms of integrals with at least one propagator massless!!!
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Dimensional invariance

Derivation of FE from dimensional invariance

It will be highly desirable to derive functional equations from some
invariance principle.

Feynman integrals depend on two rather different sets of variables:
kinematical variables and masses as well as on parameter of the space time
dimension d and powers of propagators.

The general form of functional equations for a given integral I (d)({xj}:∑
j

xj(d , {sij}, {mk}) I (d)({sij}, {m2
k}) = 0.

where xj , mj are different sets of kinematical variables, and d is arbitrary.
Functional equations must be valid for arbitrary value of d .
We can take this property as a basic principle for finding functional
equations among Feynman integrals.
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Dimensional invariance

Namely, we will try to find some combination of integrals in the form

Φ(d) =
∑
j

xj(d , {sij}, {m}) I (d)({sij}, {m2
j }).

which is invariant with respect to shift d → d + 2, i.e.

Φ(d + 2) = Φ(d),

Any integral with space time dimension d + 2 can be expressed in terms
finite set of basis integrals with space time dimension d (O.V.T, Phys.Rev.
D54 (1996) 6479 ).
This dimensional recurrence relations can be used for constructing
dimensionally invariant combinations of integrals with different arguments
and discovering functional equations.
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Dimensional invariance New principle

Algorithm for deriving functional equations

Algorithm for deriving functional equations :

For a given integral write combination Φ(d) of this integral with
undetermined arguments {sij}, m2

k and undetermined coefficients xk

Shift space time dimension by 2: d → d + 2 and express integrals
I (d+2) in terms of integrals with dimension d .

By equating arguments of integrals and coefficients in front of them
derive equations for undetermined arguments and coefficients.

Find additional equations for xj by considering limiting cases like
|d | → ∞, d → d0 (d0 = 0, 1, 2, 3...) or by taking imaginary part of
integrals on some cut.

Check that the discovered dimensionally invariant combination is zero

by considering particular cases sij = s
(0)
ij and/or by differentiating it

with respect to kinematical variables and masses.
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Dimensional invariance Example

One-loop example

Let’s consider simple example:

I
(d)
2 (q2,m2) =

1

iπd/2

∫
ddk1

(k21 + iη)((k1 − q)2 −m2 + iη)

According to our proposal we write:

Φ(d) = I
(d)
2 (q2,m2) + x1I

(d)
2 (q21 ,m

2
1) + x2I

(d)
2 (q22 ,m

2
2) = 0.

We can try to find functional equation with xj independent of d . Then

Φ(d + 2) = I
(d+2)
2 (q2,m2) + x1I

(d+2)
2 (q21 ,m

2
1) + x2I

(d+2)
2 (q22 ,m

2
2) = 0.
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Dimensional invariance Example

One-loop propagator integral

Integral I
(d)
2 (q2,m2) satisfies the following dimensional recurrence relation:

I
(d+2)
2 (q2,m2) =

(m2 − q2)2

2q2(d − 1)
I
(d)
2 (q2,m2)− (m2 + q2)

2q2(d − 1)
T

(d)
1 (m2),

where

T
(d)
1 (m2) =

1

iπd/2

∫
ddk1

k21 −m2 + iη
= −Γ

(
1− d

2

)
md−2

Substituting this relation into Φ(d + 2) gives:

z0I
(d)
2 (q2,m2) + z1I

(d)
2 (q21 ,m

2
1) + z2I

(d)
2 (q22 ,m

2
2)

+ z3T
(d)
1 (m2) + z4T

(d)
1 (m2

1) + z5T
(d)
1 (m2

2) = 0.
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Dimensional invariance Example

One-loop propagator integral

Solving equation Φ(d) = 0 with respect to I
(d)
2 (q2,m2) and substituting

solution into the new equation leads to the following relation:

Y1I
(d)
2 (q21 ,m

2
1) + Y2I

(d)
2 (q22 ,m

2
2)− (m2 + q2)

2q2(d − 1)
T

(d)
1 (m2)

− (m2
1 + q21)

2(d − 1)q21
x1T

(d)
1 (m2

1)− (m2
2 + q22)

2(d − 1)q22
x2T

(d)
1 (m2

2) = 0,

where

Y1 = −(−q2m4
1 + 2q2m2

1q
2
1 − q2(q21)2 + q21m

4 − 2q21m
2q2 + q21(q2)2)

2(d − 1)q2q21
x1,

Y2 = −(q22m
4 − 2q22m

2q2 + q22(q2)2 − q2m4
2 + 2q2m2

2q
2
2 − q2(q22)2)

(d − 1)q2q22
x2.
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Dimensional invariance Example

One-loop propagator integral

We assume that the sets {q21 ,m2
1}, {q22 ,m2

2} are different and integrals
depending on these sets are independent and nontrivial. Therefore it must
be

Y1 = 0, Y2 = 0.

These equations can be solved for q21 and q22 After that three terms will
remain

− (m2 + q2)

2q2(d − 1)
T

(d)
1 (m2)

− (m2
1 + q21)

2(d − 1)q21
x1T

(d)
1 (m2

1)− (m2
2 + q22)

2(d − 1)q22
x2T

(d)
1 (m2

2) = 0,

In order to cancel the term with T
(d)
1 (m2) and get rid off all T

(d)
1 terms

one should assume either

m2
1 = m2, m2

2 = 0, or m2
1 = 0, m2

2 = m2, or m2
1 = m2

2 = m2.
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Dimensional invariance Example

One-loop propagator integral

At m2
1 = m2, m2

2 = 0

x1 = −m2

q2
, q21 =

m4

q2
, q22 =

(q2 −m2)2

q2

At m2
1 = 0, m2

2 = m2

x2 = −m2

q2
, q21 =

(q2 −m2)2

q2
, q22 =

m4

q2

In order to determine both x1 and x2 for both solutions additional
equation is required. It can be easily found by taking the limit
(4− d)/2 = ε→ 0 for Φ(d) :

1 + x1 + x2 = 0.
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Dimensional invariance Example

One-loop propagator integral

At m2
1 = m2, m2

2 = m2 as follows from equations Y1 = Y2 = 0:

q21 = q22 =
m4

q2
,

that from one side contradicts to our assumption about different sets of
arguments and from the other side it leads to the dimensional invariant

Φ(d) 6= 0.

In both considered cases we obtained the same functional equation:

I
(d)
2 (q2,m2) =

m2

q2
I
(d)
2

(
m4

q2
,m2

)
+

(q2 −m2)

q2
I
(d)
2

(
(q2 −m2)2

q2
, 0

)
.

where

I
(d)
2 (q2, 0) =

Γ
(
2− d

2

)
Γ2
(
d
2 − 1

)
Γ(d − 2)

(−q2)
d
2
−2.
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Dimensional invariance One-loop box type integral

One-loop box type integral

The same algorithm can be applied to more complicated integrals. We

considered the box-type integral I
(d)
4 ({skr})

I
(d)
4 (snj , sjk , skl , snl ; sjl , snk) =

∫
ddq

iπd/2

× 1

[(q − pn)2−m2][(q − pj)2−m2][(q − pk)2 −m2][(q − pl)2 −m2]
,

where

sij = (pi − pj)
2, m2 = µ2 − iη.

taken at s12 = s23 = s34 = 0.

O.V. Tarasov (JINR) Functional equations for Feynman integrals 16 / 34



Dimensional invariance One-loop box type integral

One-loop box type integral

We derived a new functional equation for the integral with this kinematics:

I
(d)
4 (s14, s24, s13,m

2) =
s13

s13 − s14
I
(d)
4

(
0,

s13s24
s13 − s14

, s13,m
2

)
− s14
s13 − s14

I
(d)
4

(
s24,

s13s24
s13 − s14

, s14,m
2

)
,

where

I4(s14, s24, s13,m
2) ≡ I4(0, 0, 0, s14, s24, s13,m

2).

The most complicated part in derivation of this equation was analysis of
all possible solutions of equations for unknown parameters and arguments
of integrals. The procedure of finding all possible solutions was
implemented in Maple and also in Mathematica. Sometimes Maple
discovered not all solutions.
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Dimensional invariance One-loop box type integral

Question

We used recurrence relations to derive FE. All recurrence relations follow
from the equation:∫

ddk
∂

∂kµ
f (k, {sij}, {m2

r }) = 0.

One can raise the question:
Functional equations hold for integrals or they can be obtained as a
consequence of a relation between integrands?
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Algebraic relations Algebraic relations

Algebraic relations for propagators

Analyzing one-loop FE one can see that integrands are rather similar and
differ only by one propagator:
Integrands for the one-loop propagator type integrals

1

D1D2
,

1

D0D2
,

1

D1D0
,

Integrands for the one-loop vertex type integrals

1

D1D2D3
,

1

D0D2D3
,

1

D1D0D3
,

1

D1D2D0

where

D0 = (k1 − p0)2 −m2
0 + iη, D1 = (k1 − p1)2 −m2

1 + iη,

D2 = (k1 − p2)2 −m2
2 + iη, D3 = (k1 − p3)2 −m2

3 + iη,

Observation: since Gn = 0 vectors p1,p2,...are linearly dependent
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Algebraic relations Algebraic relations

Algebraic relations for propagators

Question: Would it be possible to find algebraic relations of the form:

1

D1D2
=

x1
D0D2

+
x2

D1D0

where

p0 = y01p1 + y02p2

and x1, x2, y01, y02 being independent of k1.
The answer is - YES! Putting all terms over the common denominator and
equating coefficients in front of different products of (k21 )a(k1p1)b(k1p2)c

to zero we obtain system of equations:

y02 − x2 = 0, y01 − x1 = 0, x1 + x2 = 1,

p21(x1 − y201) + p22(x2 − y202) + y01y02(s12 − p21 − p22)

−m2
1x1 −m2

2x2 + m2
0 = 0.

where s12 = (p1 − p2)2
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Algebraic relations Algebraic relations

Algebraic relations for propagators

Solution of this system of equations is:

x1 = y01 =
m2

2 −m2
1 + s12

2s12
−

√
Λ2 + 4s12m2

0

2s12
,

x2 = y02 =
m2

1 −m2
2 + s12

2s12
+

√
Λ2 + 4s12m2

0

2s12
.

and

Λ2 = s212 + m4
1 + m4

2 − 2s12(m2
1 + m2

2)− 2m2
1m

2
2.
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Algebraic relations Algebraic relations

Algebraic relations for propagators
Integrating obtained algebraic relation w.r.t. k1 gives the following FE:

I
(d)
2 (m2

1,m
2
2, s12) =

s12 + m2
1 −m2

2 − λ
2s12

I
(d)
2 (m2

1,m
2
0, s13(m2

1,m
2
2,m

2
0, s12))

+
s12 −m2

1 + m2
2 + λ

2s12
I
(d)
2 (m2

2,m
2
0, s23(m2

1,m
2
2,m

2
0, s12)).

where

s13 =
Λ2 + 2s12(m2

1 + m2
0)

2s12
+

m2
1 −m2

2 + s12
2s12

λ

s23 =
Λ2 + 2s12(m2

2 + m2
0)

2s12
+

m2
1 −m2

2 − s12
2s12

λ.

λ =
√

Λ2 + 4s12m2
0

Parameter m0 is arbitrary and can be taken at will. The same equation
was obtained from recurrence relations by imposing conditions on Gram
determinants.
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Algebraic relations

Algebraic relations for propagators

Similar to the relation with two propagators one can find relation for three
propagartors:

1

D1D2D3
=

x1
D2D3D0

+
x2

D1D3D0
+

x3
D1D2D0

.

Here p1, p2 and p3 are independent external momenta, k1 will be
integration momentum and

p0 = y01p1 + y02p2 + y03p3.

Multiplying both sides of equation by the product D1D2D3D0 and
equating coefficients in front of k21 ,k1p1,k1p2,k1p3 and term independent
of k1 we obtain system of equations

y01 − x1 = 0, y02 − x2 = 0, y03 − x3 = 0, x3 + x2 + x1 − 1 = 0,

[x1 − y01(y03 + y02 + y01)]p21 + [x2 − y02(y03 + y02 + y01)]p22

+[x3 − y03(y03 + y01 + y02)]p23

+y02y03p23 + y01y03p13 + y01y02p12 −m2
1x1 −m2

2x2 −m2
3x3 + m2

0 = 0.
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Algebraic relations

Algebraic relations for product of 3 propagators

This system has the following solution

x1 = y01 = 1− α− y02, x2 = y02, x3 = y03 = α,

where α is solution of the quadratic equation

α2p13 + [m2
3 −m2

1 − p13 + y02(p13 + p12 − p23)]α

+m2
1 −m2

0 + (m2
2 −m2

1 − p12 + p12y02)y02 = 0.

Solution depends on 2 arbitrary parameters: m0, y02.
By integrating the obtained relation we get the same FE as it was given
before.
Functional relations for Feynman integrals with integrands being rational
functions strongly remind Abel’s addition theorem!
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Algebraic relations

Abelian integral is an integral in the complex plane of the form∫ z

z0

R(x , y)dx ,

where R(x , y) is an arbitrary rational function of the two variables x and
y . These variables are related by the equation

F (x , y) = 0,

where F (x , y) is an irreducible polynomial in y ,

F (x , y) ≡ φn(x)yn + ...+ φ1(x)y + φ0(x),

whose coefficients φj(x), j = 0, 1, ...n are rational functions of x . Abelian
integrals are natural generalizations of elliptic integrals, which arise when

F (x , y) = y2 − P(x),

where P(x) is a polynomial of degree 3 and 4. If degree of the polynomial
is greater than 4 then we have hyperelliptic integral.
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Algebraic relations

Abel’s theorem

Let C and C ′ be plane curves given by the equations

C : F (x , y) = 0,

C ′ : φ(x , y) = 0.

These curves have n points of intersections (x1, y1),. . . (xn, yn), where n is
the product of degrees of C and C ′. Let R(x , y) be a rational function of x
and y where y is defined as a function of x by the relation F (x , y) = 0.
Consider the sum

I =
n∑

i=1

∫ xi ,yi

x0,y0

R(x , y)dx

Integrals being taken from a fixed point to the n points of intersections. If
some of the coefficients a1,a2,. . . ,ak of φ(x , y) are regarded as continuous
variables, the points (xi , yi ) will vary continuously and hence I will be a
function, whose form is to be determined, of the variable coefficients
a1,a2,. . . ,ak .
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Algebraic relations

Abel’s theorem

Abel’s theorem:
The partial derivatives of the sum I , with respect to any of the
coefficients of the variable curve φ(x , y) = 0, is a rational function of the
coefficients and hence I is equal to a rational function of the coefficients of
φ(x , y) = 0 , plus a finite number of logarithms or arc tangents of such
rational functions.
Important: integrals themselves can be rather complicated transcendental
functions but their sum can be simple.
Example: Elliptic integral of the second type:

E (k, x) =

∫ x

0

(1− k2x)dx√
x(1− x)(1− k2x)

.
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Algebraic relations

Abel’s theorem

We take as C and C ′

C : y2 = x(1− x)(1− k2x),

C ′ : y = ax + b.

The elimination of y between two equations will give us as the abscissae
x1, x2, x3 of the points of intersection the three roots of the equation:

φ(x) = k2x3 − (1 + k2 + a2)x2 + (1− 2ab)x − b2 = 0.

The corresponding sum will be

I (a, b) =

∫ x1

0
R(x)dx +

∫ x2

0
R(x)dx +

∫ x3

1/k2

R(x)dx

Abel’s theorem gives addition formula:∫ x1

0
R(x)dx +

∫ x2

0
R(x)dx +

∫ x3

1/k2

R(x)dx = −2a + κ,

where κ is an arbitrary constant.
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Algebraic relations

One can find FE for Feynman integrals following closely derivation of
relationships for usual algebraic integrals.
Deriving relations for propagators we used orthogonality condition

Gn = 0. (1)

In fact it is not needed to assume such a relation. For example, to fix
parameters in algebraic relations for products of two propagators

R2(k1, p1, p2,m
2
1,m

2
2,m

2
0) =

1

D1D2
− x1

D2D0
− x2

D1D0
= 0, (2)

instead of (1) we can impose conditions

∂x1
∂k1µ

=
∂x2
∂k1µ

= 0. (3)

Multiplying both sides of (2) by D0D1D2 we get

D0 − x1D1 − x2D2

= (1− x1 − x2)k21 + 2x1k1p1 + 2x2k1p2

+x1m
2
1 + x2m

2
2 − x1p

2
1 − x2p

2
2 − 2k1p3 −m2

3 + p23 . (4)
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Algebraic relations

Differentiating this relation, contracting with k1, p1, p2, p3 and taking into
account (3) gives several equations:

−2x1(k21 − k1p1)− 2x2(k21 − k1p2) + 2k21 − 2k1p3 = 0,

2(1− x1 − x2)k1p1 + 2x1p
2
1 + 2x2p1p2 − 2p1p3 = 0,

2(1− x1 − x2)k1p2 + 2p1p2x1 + 2x2p
2
2 − 2p2p3 = 0,

2(1− x1 − x2)k1p3 + 2x1p1p3 + 2x2p2p3 − 2p23 = 0. (5)

They can be used to express k1p3, p1p3, p2p3, x1, x2 in terms of k21 , k1p1,
k1p2, p21 , p1p2, p22 considered to be independent variables.
For example, we get:

k1p3 = x1k1p1 − x1k1p2 + k1p2 +
x1
2

(m2
1 −m2

2 − p21 + p22)

+
1

2
(m2

2 − p22 −m2
3 + p23),

and similar expressions for other scalar products of p3. Solution for x1, x2
is the same as it was before and as a result we obtained the same relation
between products of two propagators.
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Algebraic relations

Solution of the above system of equations is rather similar to finding
intersections of two plane curves considered in Abel’s theorem.

Similar to usual algebraic integrals for one variable we can construct
various integrands out of our different relationships for products of
propagator. These integrands will be rational functions in independent
variables.

Integrations should be done over d dimensional space. Rational
function must resemble integrands for Feynman integrands.
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Algebraic relations

For example, integrating product of different relationships between two
propagators multiplied by 1/[(k1 − k2)2 −m2

5]ν5 with respect to k1, k2
leads to the FE for the integral∫

ddk1d
dk2

[(k1 − k2)2 −m2
5]ν5

R2(k1, p1, p2,m
2
1,m

2
2,m

2
0)R2(k2, p3, p4,m

2
3,m

2
4, m̃

2
0) = 0,

corresponding to the following diagram

k1 − p3

k1 − p1

k2 − p2

k2 − p4

k1 − k2
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Algebraic relations

By integrating product of the relationship

R3(k1, p1, p2, p3,m
2
1,m

2
2,m

2
3,m

2
0)

=
1

D1D2D3
− x1

D2D3D0
− x2

D1D3D0
− x3

D1D2D0
= 0,

and one loop-propagator integral

∫ ∫
ddk1d

dk2
[k21 −m2

1]ν1 [(k1 − k2)2 −m2
5]ν5

R3(k2, p2, p3, p4,m
2
2,m

2
3,m

2
4) = 0,

we obtain the FE for the integral corresponding to the following diagram
with arbitrary ν1, ν5, and arbitrary momenta and masses

k2 − p3

k1 − p1

k2 − p2

k2 − p4k1 − k2
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Concluding remarks

Concluding remarks

Three different methods for finding FE for Feynman integrals with
any number of loops and external legs are proposed.

FE reduce integrals with complicated kinematics to simpler integrals

FE can be used for analytic continuation of Feynman integrals
without knowing explicit analytic result.

Application of these methods for some two- and three- loop integrals
is in progress

Systematic investigation of FE for Feynman integrals based on
algebraic geometry and group theory is needed.

Some improvements of these methods can be done by exploiting
known methods for algebraic integrals.

The methods can be extended for finding functional equations among
hypergeometric as well as holonomic functions.
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