Automatic numerical integration and extrapolation for Feynman loop integrals

E. de Doncker¹, F. Yuasa², K. Kato³, T. Ishikawa²

¹Dept. of Computer Science, W. Michigan Univ., Kalamazoo MI 49008, U.S.A.

²High Energy Accelerator Research Organization (KEK), Tsukuba, Japan ³Department of Physics, Kogakuin University, Shinjuku, Tokyo, Japan

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Oct. 9, 2016

	Loop integral - representation
	Conclusions
de Doi	ncker, Yuasa, Kato, Ishikawa

€ 9Q@

1	Loop integral - representation	
2	Extrapolation/convergence acceleration me	ethods
	2-loop self-energy/Magdeburg	
	• 2-loop vertex, box - PARINT performanc	
	3-loop self-energy	
	3-loop vertex	
	4-loop self-energy	
	Conclusions	→ < @ > < ≥ > < ≥ > < ≥ > < ≥

- Loop integral representation
 - Extrapolation/convergence acceleration methods
- 3 Automatic integration/ParInt
 - Automatic Integration
 - PARINT
 - Parallel multivariate integration
 - Numerical results
 - 2-loop self-energy/Magdeburg
 - 2-loop vertex, box PARINT performance

< 同 ト < 三 ト <

- 3-loop self-energy
- 3-loop vertex
- 4-loop self-energy
- 5 Conclusions

- Loop integral representation
- Extrapolation/convergence acceleration methods
- 3 Automatic integration/ParInt
 - Automatic Integration
 - PARINT
 - Parallel multivariate integration
 - 4 Numerical results
 - 2-loop self-energy/Magdeburg
 - 2-loop vertex, box PARINT performance

・ 回 ・ ・ ヨ ・ ・

- 3-loop self-energy
- 3-loop vertex
- 4-loop self-energy

Conclusions

- Loop integral representation
- Extrapolation/convergence acceleration methods
- 3 Automatic integration/ParInt
 - Automatic Integration
 - PARINT
 - Parallel multivariate integration
 - 4 Numerical results
 - 2-loop self-energy/Magdeburg
 - 2-loop vertex, box PARINT performance

▲□ ▶ ▲ 三 ▶ ▲

- 3-loop self-energy
- 3-loop vertex
- 4-loop self-energy

Loop integral - representation

L-loop integral with N internal lines

$$\mathcal{I} = \frac{\Gamma\left(N - \frac{nL}{2}\right)}{(4\pi)^{nL/2}} (-1)^N \int_0^1 \prod_{r=1}^N dx_r \,\delta(1 - \sum x_r) \frac{C^{N-n(L+1)/2}}{(D - i\varrho C)^{N-nL/2}}$$
(1)

<ロト <回 > < 回 > < 回 > .

э

- *C* and *D* are polynomials determined by the topology of the corresponding diagram and physical parameters
- $n = n(\varepsilon)$ to account for IR or UV singularity (where ε = dimensional regularization parameter); let $n(\varepsilon) = 4 2\varepsilon$ for UV singularity

Loop integral - representation

$$\begin{aligned} \mathcal{I}_{N,L} &= \Gamma(N - \frac{nL}{2})(-1)^N \int_0^1 dx_1 \int_0^{1-x_1} dx_2 \dots \int_0^{1-x_1\dots-x_{N-2}} \frac{C^{N-n(L+1)/2}}{(D-i\varrho C)^{N-nL/2}} \\ &= \Gamma(N - \frac{nL}{2})(-1)^N \int_{\mathcal{S}_{N-1}} \frac{C^{N-n(L+1)/2}}{(D-i\varrho C)^{N-nL/2}} d\mathbf{x} \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

where $S_d = \{ \boldsymbol{x} \in \mathbb{R}^d \mid 0 \leq \sum_{r=1}^d x_r \leq 1 \} : d$ -dimensional unit simplex

Napkin integral

 $N = 3, L = 1, C = 1, D = -x_1x_2s + (x_1 + x_2)^2m^2 + (1 - x_1 - x_2)M^2$ Example for m = 40, M = 93, s = 9000

$$\begin{aligned} \mathcal{I}_{3,1}(\rho) &= -\int_0^1 dx_1 \int_0^{1-x_1} dx_2 \ \frac{1}{D-i\varrho} \\ & Re \mathcal{I}_{3,1}(\rho) = -\int_0^1 dx_1 \int_0^{1-x_1} dx_2 \ \frac{D}{D^2+\varrho^2} \approx \ I + C_1 \varrho + C_2 \varrho^2 + \ldots + C_\nu \varrho^\nu \end{aligned}$$

Linear extrapolation as $\rho \to 0$: Let $\rho = \rho_{\ell} = 2^{7-\ell}$, $\ell = 0, 1, ...$ [3] Approximate $Q(\rho_{\ell}) \approx \mathcal{I}_{3,1}(\rho_{\ell})$ and solve $(\nu + 1) \times (\nu + 1)$ linear systems, $\nu = 1, 2, ...$

$$Q(\rho_\ell) = \sum_{k=0}^{\nu} C_k \varrho_\ell^k, \quad \ell = 0, \dots, \nu$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Extrapolation/convergence acceleration methods

- (i) If denominator vanishes in interior of the integration domain: integral calculated in the limit as $\rho \to 0$
- (ii) Integral with infrared (IR) singularity $(n = 4 + 2\varepsilon \text{ in (1)})$: calculated in the limit as $\varepsilon \to 0$ [6]
- (iii) Integral with ultraviolet (UV) singularity ($n = 4 2\varepsilon$): calculated in the limit as $\varepsilon \to 0$

イロト イヨト イヨト イヨト

Asymptotics/Mechanics of extrapolation

Numerical extrapolation (is tailored to an underlying asymptotic expansion): Linear extrapolation for

$$S(\varepsilon) \sim C_{K} \varphi_{K}(\varepsilon) + C_{K+1} \varphi_{K+1}(\varepsilon) + C_{K+2} \varphi_{K+2}(\varepsilon) + \dots, \text{ as } \varepsilon \to 0.$$

assuming the φ_k functions are known, for example, $\varphi_k(\varepsilon) = \varepsilon^k$. Create sequences of $S(\varepsilon_\ell)$ such that

$$S(\varepsilon_{\ell}) = C_{K}\varphi_{K}(\varepsilon_{\ell}) + C_{K+1}\varphi_{K+1}(\varepsilon_{\ell}) + \ldots C_{K+\nu}\varphi_{K+\nu}(\varepsilon_{\ell}), \quad \ell = 0, \ldots, \nu.$$

Solve linear systems of orders $(\nu + 1) \times (\nu + 1)$, for increasing values of ν . and decreasing $\varepsilon = \varepsilon_{\ell}$ (e.g., geometric sequence $\varepsilon_{\ell} = b^{-\ell}, b > 1$). Bulirsch [2] type sequences can be used for a sequence of the form $\varepsilon_{\ell} = 1/b_{\ell}, b_{\ell} = 2, 3, 4, 6, 8, 12, 16, 24, \ldots$. Non-linear extrapolation with the ϵ -algorithm [11, 13, 12] can be applied under more general conditions with geometric sequences of ε_{ℓ} [3].

<<p>・

Automatic integration

Black box approach

Obtain an approximation Qf to an integral

$$lf = \int_{\mathcal{D}} f(\vec{x}) \ d\vec{x}$$

and error estimate $\mathcal{E}f$, in order to satisfy a specified accuracy requirement for the actual error, of the form:

 $|Qf - If| \leq \mathcal{E}f \leq \max\{t_a, t_r | If |\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for given *integrand function* f, region D and (absolute/relative) error tolerances t_a and t_r .

PARINT package

PARINT (PARallel/distributed INTegration), over MPI (Message Passing Interface), includes:

- Multivariate adaptive code: low dimensions (say, ≤ 12), deals with non-severe integrand problems
- Quasi-Monte Carlo (QMC): sequence of Korobov/Richtmyer rules (non-adaptive); randomized copies of each rule are applied for error estimate computation, *high dimensions okay, smooth integrand* behavior
- Monte Carlo (MC): based on (choice of) SPRNG or Random123 Pseudo-Random Number Generators (PRNG), high dimensions, erratic integrand and/or domain
- (1D) adaptive quadrature methods from QuadPack [10], can be used in iterated (repeated) integration

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Parallel multivariate integration

- On the rule or points level: in non-adaptive algorithms, e.g., Monte-Carlo (MC) algorithms and composite rules using grid or lattice points, $If = \int_{\mathcal{D}} f \approx \sum_{k} w_k f(\vec{x}_k)$: computation of the $f(\vec{x}_k)$ evaluation points in parallel
- On the region level: in adaptive (region-partitioning) methods, task pool algorithms, load balancing (distributed memory systems); or maintaining shared priority queue (in shared memorory systems)
- In iterated integration:
 - On the rule level: inner integrals are independent and computed in parallel, e.g., over subregion $S = D_1 \times D_2$ (inner region D_2) $\int_S F(\vec{x}) dx \approx \sum_k w_k F(\vec{x}_k)$, with $F(\vec{x}_k) = \int_{D_2} f(\vec{x}_k, \vec{y}) d\vec{y}$

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

• Inner integrations can be performed adaptively.

Adaptive partitioning

Figure : Adaptive partitioning of the domain (singularity along axes) [9]

<ロ> <同> <同> <同> < 同> < 同> < 同> <

크

Priority driven adaptive algorithm

Adaptive region partitioning

Evaluate initial region & update results Initialize priority queue to empty while (evaluation limit not reached and estimated error too large) Retrieve region from priority queue Split region Evaluate subregions & update results Insert subregions into priority queue

> Subregion approximations: (2D) $\sum_{k} w_k f(x_k, y_k)$ Iterated $(1D)^2 \sum_{i} u_i \sum_{j} v_j f(x_i, y_j)$

Figure :
$$\int_0^1 dx \int_0^1 dy \frac{2\varrho y}{(x+y-1)^2 + \varrho^2}$$

= $\int_0^1 dx \left[\int_0^1 dy \frac{2\varrho y}{(x+y-1)^2 + \varrho^2} \right]$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Sample 2-loop self-energy diagrams

Figure : [2Is] 2-loop self-energy diagrams with massive internal lines: (a) 2-loop sunrise-sunset N = 3 (Laporta [8] Fig 2(b)), (b) 2-loop lemon N = 4 (Laporta [8] Fig 2(c)), (c) 2-loop half-boiled egg N = 5, (d) 2-loop Magdeburg N = 5 (Laporta [8] Fig 2(d))

< □ > < □ > < □ > < □ > < □ > < □</p>

Conclusions

Extrapolation results for Magdeburg diagram Fig [2ls] (d)

	Magdeburg Integral $I_d^{S2} \Gamma(1 + \varepsilon)^{-2}$ Extrapolation									
l	Er	T[S]	RES. Co	RES. C1	RES. C2	Res. C_3				
0	8.5e-14	0.8								
1	1.0e-13	19.7	0.69130084611470	-0.142989490499						
2	1.6e-13	7.5	0.84949643770104	-0.617576265258	0.3163911832					
3	4.8e-13	6.9	0.90878784906010	-1.032616144771	1.1464709422	-0.47433129				
4	8.5e-13	6.6	0.92198476262012	-1.230569848171	2.0702548914	-2.05796092				
5	1.2e-12	6.5	0.92353497740505	-1.278626506507	2.5508214747	-3.98022725				
6	3.0e-12	6.6	0.92362889210499	-1.284543132600	2.6730984140	-5.02831530				
7	2.4e-12	6.6	0.92363178137723	-1.284910070175	2.6885097922	-5.30131686				
8	2.8e-12	6.6	0.92363182617006	-1.284921492347	2.6894768694	-5.33613164				
9	2.8e-12	6.6	0.92363182651847	-1.284921670382	2.6895071354	-5.33832809				
10	2.9e-12	6.6	0.92363182651995	-1.284921671903	2.6895076534	-5.33840357				
11	2.9e-12	6.6	0.92363182651990	-1.284921671790	2.6895075765	-5.33838110				
12	2.9e-12	6.6	0.92363182651992	-1.284921671898	2.6895077252	-5.33846839				
13	3.7e-12	6.6	0.92363182651991	-1.284921671798	2.6895075774	-5.33835823				
14	2.9e-12	6.6	0.92363182651991	-1.284921671840	2.6895076182	-5.33839951				
	E	xact:	0.9236318265199	-1.284921671848	2.6895076265	-5.33839923				

Table : Magdeburg integral (by PARINT on thor cluster, 64 procs., in long double precision), $t_r = 10^{-13}$, max. # evals = 1B, $\varepsilon = 2^{-\ell}$, $I_d^{S2} \Gamma(1 + \varepsilon)^{-2} \sim \sum_{k \ge 0} C_k \varepsilon^k \approx 0.9236318265199 - 1.284921671848 \varepsilon + 2.689507626490 \varepsilon^2 - 5.338399227511 \varepsilon^3 \dots$

Sample 2-loop vertex diagrams

Figure : [2lv] 2-loop vertex (UV-divergent) diagrams with massive internal lines: (a) N = 4 (Laporta [8] Fig 3(b)), (b) N = 5 (Laporta [8] Fig 3(c))

・ロト ・四ト ・ヨト ・ヨト

Conclusions

Extrapolation results for diagram Fig [2lv] (a)

-	Integral $I_a^{V2} \Gamma(1 + \varepsilon)^{-2}$ Extrapolation									
b_ℓ	Er	T[s]	RES. C_{-2}	RES. C_{-1}	Res. C ₀	Res. C ₁				
3	8.7e-12	1.4								
4	2.3e-11	1.5	0.51489021736	0.535680679						
6	3.1e-10	1.8	0.50586162735	0.598880809	-0.1083431					
8	8.2e-11	5.2	0.50111160609	0.660631086	-0.3648442	0.342002				
12	1.2e-09	2.5	0.50015901670	0.680635463	-0.5153534	0.822107				
16	1.7e-09	4.2	0.50001764652	0.685300679	-0.5733151	1.161395				
24	4.4e-09	20.5	0.50000135665	0.686098882	-0.5885950	1.307352				
32	7.7e-09	19.1	0.5000007798	0.686192225	-0.5912981	1.347595				
48	3.8e-10	8.6	0.5000000083	0.686200327	-0.5916415	1.355242				
		Exact:	0.5	0.686200636	-0.5916667	1.356197				

Table : Results 2-loop UV vertex integral [5], $I_a^{V^2}$ (on Mac Pro), rel. err. tol. $t_r = 10^{-10}$ (outer), 5×10^{-11} (inner three), T[s] = Time (elapsed user time in s), $\varepsilon = 1/b_\ell$ (starting at 1/3), E_r = outer integration estim. rel. error; $I_a^{V^2}(\varepsilon) \Gamma(1+\varepsilon)^{-2} \sim \sum_{k \ge -2} C_k \varepsilon^k \approx$ $0.5 \varepsilon^{-2} + 0.6862006357658 \varepsilon^{-1} - 0.5916667014024 + 1.356196533114 \varepsilon \dots$ [8]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sample 2-loop box diagrams

Figure : [2lb] Sample 2-loop box diagrams (a) N = 5 (double-triangle), (b) N = 6(tetragon-triangle), (c) N = 7 (pentagon-triangle), (d) N = 7 ladder, (e) N = 7 crossedladder [8, 4]

Parallel performance of PARINT adaptive integration for 2-loop box integrals on MPI (OpenMPI)

2-LOOP DIAG.	Ν	Rel Tol <i>t</i> r	MAX EVALS	T ₁ [s]	T ₆₄ [s]	Speedup
Fig [2lb] (a)	5	10 ⁻¹⁰	400M	32.6	0.74	44.1
Fig [2lb] (b)	6	10 ⁻⁹	3B	213.6	5.06	42.2
Fig [2lb] (c)	7	10 ⁻⁸	5B	507.9	8.83	57.5
Fig [2lb] (d) ladder	7	10 ⁻⁸	2B	189.9	4.33	43.9
Fig [2lb] (e) crossed	7	10^{-7}	300M	27.6	0.49	56.3
Fig [2lb] (e) crossed	7	10 ⁻⁹	20B	1892.5	34.6	54.7

Table : [2lb] Test specifications and parallel performance (PARINT) for 2-loop box diagrams [4]; Speedup for *p* procs. = T_1/T_p

э

3-loop self-energy diagrams

Figure : [3Is] Sample 3-loop self-energy diagrams with massive and massless internal lines (finite and UV-divergent diagrams), cf. Laporta [8], Baikov and Chetyrkin [1]: (a) N = 7, (b) N = 7, (c) N = 8, (d) N = 8, (e) N = 7, (f) N = 8, (g) N = 4, (h) N = 6, (i) N = 7, (j) N = 7

(日)

Diagrams [3ls] (i) and (j)

N = 7, L = 3 Massive internal lines [8]

$$\begin{split} I_{l}^{S3}(\varepsilon) \; & \Gamma(1+\varepsilon)^{-3} \sim \sum_{k \geq -1} C_{k} \varepsilon^{k} \\ & \sim 0.92363182652 \, \varepsilon^{-1} - 2.423491634 + 8.38134971 \, \varepsilon - 26.9936212 \, \varepsilon^{2} \dots \end{split}$$

$$I_{j}^{S3}(\varepsilon) \Gamma(1+\varepsilon)^{-3} \sim \sum_{k \ge -1} C_{k} \varepsilon^{k}$$

~ 0.92363182652 \varepsilon^{-1} - 2.116169719 + 6.92954468 \varepsilon - 21.5032784 \varepsilon^{2} ... \vee

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Conclusions

Results for diagram [3ls] (i)

	INTEGRA	L Fig [3ls] (i)		EXTRAPOLATION				
l	Ea	T[s]	RESULT C_{-1}	Result Co	RESULT C1	Result C_2		
17	2.3e-12	682.3						
18	4.2e-12	682.8	0.88532153209	-1.412495535				
19	6.0e-12	683.8	0.91647848504	-2.133365157	4.1493435			
20	5.2e-12	1027.6	0.92246162843	-2.356946186	6.9162602	-11.33999		
21	2.2e-12	2415.8	0.92346458479	-2.410840073	7.9934802	-20.83203		
22	3.6e-12	2419.5	0.92361089965	-2.421456174	8.2986081	-25.17454		
23	5.7e-12	2425.8	0.92362953012	-2.423211188	8.3667190	-26.56843		
24	8.7e-12	2431.6	0.92363160796	-2.423458644	8.3791875	-26.91297		
25	1.3e-11	2437.1	0.92363180412	-2.423487620	8.3810333	-26.97920		
26	1.7e-11	2445.7	0.92363182397	-2.423491206	8.3813166	-26.99204		
		Exact:	0.92363182652	-2.423491634	8.3813497	-26.99362		

Table : Results 3-loop UV self-energy integral (on 4 nodes with 16 procs per node of *thor* cluster), err. tol. $t_r = 10^{-13}$, T[s] = Time (elapsed user time in s); $\varepsilon = \varepsilon_{\ell} = 1.15^{-\ell}$, $\ell = 17, 18, \ldots, E_r$ = integration estim. rel. error

<ロ> <四> <四> <四> <三</p>

3

Conclusions

Results for diagram [3ls] (j)

	INTEGRA	L Fig [3ls] (j)				
l	Ea	T[s]	RESULT C_{-1}	Result Co	Result C1	Result C2
5	7.1e-14	915.1				
6	5.7e-14	668.8	0.79556987526	-0.624745066		
7	6.4e-14	760.4	0.88129897281	-1.356849184	1.5364029	
8	3.9e-13	1444.9	0.91188370051	-1.809949406	3.7234312	-3.43942
9	2.2e-13	2104.7	0.92097424134	-2.018776382	5.4720364	-9.76427
10	2.4e-12	2018.5	0.92314713425	-2.091734298	6.4193304	-15.70840
11	7.0e-12	1978.3	0.92356124561	-2.111347543	6.7915499	-19.33007
12	1.3e-11	2288.4	0.92362368266	-2.115423673	6.9006678	-20.88190
13	3.2e-11	2309.7	0.92363108618	-2.116079491	6.9248672	-21.15424
14	6.7e-11	2331.9	0.92363177196	-2.116161010	6.9289487	-21.36736
15	1.4e-10	2534.4	0.92363182585	-2.116169538	6.9295216	-21.50172
-		Exact:	0.92363182652	-2.116169718	6.9295447	-21.50328

Table : Results 3-loop UV self-energy integral (on 4 nodes with 16 procs per node of *thor* cluster), err. tol. $t_r = 10^{-13}$, T[s] = Time (elapsed user time in s); $\varepsilon = \varepsilon_{\ell} = 1.3^{-\ell}$, $\ell = 5, 6, \ldots$, E_r = integration estim. rel. error

<ロ> <四> <四> <四> <三</p>

3

Sample 3-loop vertex diagrams

Figure : [3lv] 3-loop vertex (UV-divergent) diagrams with massless internal lines: (a) N = 6 (Heinrich et al. [7] Diag $A_{6,2}$), (b) N = 7 (Heinrich et al. [7] Diag $A_{7,5}$)

・ロト ・四ト ・ヨト ・ヨト

3-loop vertex diagram [3lv] (a)

N = 6, L = 3 - Extrapolation applied to $\Gamma(1 - \varepsilon)^3 l_a^{V3}$, where

$$I_{a}^{V3} = \Gamma(N - nL/2)(-1)^{N} \int_{0}^{1} \prod_{r=1}^{N} dx_{r} \, \delta(1 - \sum x_{r}) \frac{C^{N - n(L+1)/2}}{D^{N - nL/2}}$$

= $\mathcal{I}_{6,3} = \Gamma(3\varepsilon) \int_{\mathcal{S}_{5}} \frac{C^{-2+4\varepsilon}}{D^{3\varepsilon}}$

 $\Gamma(1-\varepsilon)^{3}I_{a}^{V3} \sim \sum_{k\geq -1} C_{k} \varepsilon^{k} \approx -2.4041138063 \frac{1}{\varepsilon} - 25.42515557 - 183.204184 \varepsilon + \dots$

	3-LOOP	VERTEX				
l	Er	T[S]	RES. C_{-1}	Res. <i>C</i> 0	RES. C ₁	Res. C ₂
20	6.9e-09	171.6				
21	4.7e-09	171.6	-2.2674024847	-36.22875015		
22	3.8e-09	171.2	-2.4184908276	-23.48554838	-26.647842	
23	4.2e-09	173.2	-2.4030392631	-25.64179665	-16.727996	-150.451
24	4.0e-09	174.5	2.4041730407	-25.40846949	-185.040255	-911.900
25	3.5e-09	175.9	-2.4041116670	-25.42597896	-183.074773	-1020.406
26	3.8e-09	177.3	-2.4041138550	-25.42514605	-183.204386	-1009.854
	E	xact:	-2.4041138063	-25.42515557	-183.204184	-1009.791

Table : Results 3-loop UV vertex integral I_a^{V3} by PARINT on 4 nodes/16 procs. per node of *thor* cluster (in *long double* precision), $t_r = 10^{-13}$, max. # evals = 30B_

3-loop vertex diagram [3lv] (a) Mellin-Barnes

Using Heinrich et al. [7] 2-fold Mellin-Barnes representation:

$$\begin{split} \Gamma^{3}(1-\varepsilon)I_{a}^{V3} &= -\frac{\Gamma^{3}(1-\varepsilon)\Gamma(3\varepsilon)\Gamma^{2}(1-3\varepsilon)}{\Gamma(1-2\varepsilon)\Gamma(2-4\varepsilon)}\int_{c_{1}-i\infty}^{c_{1}+i\infty}\frac{dw_{1}}{2\pi i}\int_{c_{2}-i\infty}^{c_{2}-i\infty}\frac{dw_{2}}{2\pi i} \\ &\times \frac{\Gamma(-1+3\varepsilon-w_{1})\Gamma(-1+2\varepsilon-w_{1})\Gamma(2-4\varepsilon+w_{1})\Gamma(-w_{2})\Gamma(w_{2}-w_{1})}{\Gamma(3\varepsilon-w_{1})\Gamma(2-4\varepsilon+w_{2})\Gamma(2-4\varepsilon+w_{1}-w_{2})} \\ &\times \Gamma(1-\varepsilon+w_{2})\Gamma(1-\varepsilon-+w_{1}-w_{2})\Gamma(1-2\varepsilon+w_{2})\Gamma(1-2\varepsilon+w_{1}-w_{2}) \end{split}$$

where $c_1 = -6/5$, $c_2 = -1/2$, $-1/15 < \varepsilon < 3/20$ (to insure that the contours separate left poles and right poles of Γ functions in the complex plane).

We use a transformation $w_1 = c_1 + i t_1$ and $w_2 = c_2 + i t_2$ resulting in an integral over \mathbb{R}^2 , i. e., $\int_{c_1-i\infty}^{c_1+i\infty} \frac{dw_1}{2\pi i} \int_{c_2-i\infty}^{c_2+i\infty} \frac{dw_2}{2\pi i} \rightarrow \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{dt_1}{dt_2}$ and brings complex arguments in the *Gamma*-functions of the integrand, e.g., $\Gamma(-1 + 3\varepsilon - w_1) \rightarrow \Gamma(-1 + 3\varepsilon - c_1 - i t_1)$.

Finally a transformation $t_1 = \tan(x_1)$ with $dt_1 = dx_1 / \cos^2(x_1)$ and $t_2 = \tan(x_2)$ with $dt_2 = dx_2 / \cos^2(x_2)$ maps $\mathbb{R}^2 \rightarrow (-\pi/2, \pi/2) \times (-\pi/2, \pi/2)$. We can use DOAGS × DOAGS from QUADPACK [10] to approximate the integral numerically.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

integral numerically.

Conclusions

Extrapolation results 3-loop vertex diagram [3lv] (a) Mellin-Barnes

 $C_{-1}\approx-2.40411380631918857086,\ C_0\approx-25.4251555748616808079,\ C_1\approx-183.204184197615870658,\ C_2\approx-1009.79068071241986670$

Extrapolation Mellin-Barnes $\Gamma^3(1-\varepsilon) I_a^{V3} \sim \sum_{k>-1} C_k \varepsilon^k$

	3-loop	VERTEX	INTEGRAL $\Gamma^{3}(1-\varepsilon) I_{a}^{V3}$	EXTRAPOLATION			
l	Er	T[s]	RES. C_{-1}	Res. C ₀	Res. C ₁	Res. C ₂	Res. C_3
3	4.6e-10	0.123					
4	7.2e-09	0.065	2.71270658920750307	-124.29196699004			
5	7.1e-09	0.089	-3.26671737757164271	19.214208212662	-765.366267748		
6	6.4e-11	0.103	-2.34303998712649708	-32.511725652267	62.2486740911	-3783.382591	
7	3.2e-10	0.103	-2.40606427439256088	-24.948811180339	-220.100132861	88.82961836	-16521.43
8	7.2e-10	0.105	-2.40408459536474339	-25.439771579237	-180.823300949	-1168.029003	-433.6484
9	1.1e-09	0.101	-2.40411401541469472	-25.424943874060	-183.274814872	-999.9251910	-5454.348
10	1.3e-09	0.100	-2.40411380559384602	-25.425157052041	-183.203187071	-1010.075874	-4804.705
11	1.4e-09	0.100	-2.40411380632043015	-25.425155569821	-183.204191028	-1009.786734	-4842.949
12	1.5e-09	0.100	-2.40411380631917693	-25.425155574937	-183.204184058	-1009.790784	-4841.860
13	1.5e-09	0.100	-2.40411380631918892	-25.425155574852	-183.204184293	-1009.790511	-4842.006
	E	xact:	-2.40411380631918857	-25.425155574862	-183.204184198	-1009.790681	_

Table : Results 3-loop UV vertex integral (by DQAGS × DQAGS on Mac-Pro in double precision), $t_r = 10^{-8}$, max. # subdivisions = 100 in each direction, $\varepsilon = 2^{-\ell}$, $\ell \ge 2$

3-loop vertex diagram [3lv] (b)

N = 7, L = 3 - Extrapolation applied to $\Gamma(1 - \varepsilon)^3 l_b^{V3}$, where

$$I_b^{V3} = \mathcal{I}_{7,5} = \Gamma(1+3\varepsilon) \int_{\mathcal{S}_6} \frac{C^{-1+4\varepsilon}}{D^{1+3\varepsilon}}$$

$$\Gamma(1-\varepsilon)^3 I_b^{V3} \sim \sum_{k\geq 0} C_k \varepsilon^k \approx 34.0969298 + 295.8700 \varepsilon + \dots$$

	3-loop	VERTEX	INTEGRAL I	EXTRAPOLATION
l	Er	T[S]	RES. C0	RES. C1
25	7.8e-07	667.5		
26	6.8e-07	667.4	33.8889738	338.4560
27	6.0e-07	667.5	34.1049542	293.1279
28	5.6e-07	667.4	34.0967447	295.9785
29	5.3e-07	667.4	34.0969222	295.8877
	E	xact:	34.0969298	295.8700

Table : Results 3-loop UV vertex integral I_b^{V3} by PARINT on 4 nodes/16 procs. per node of *thor* cluster (in *long double* precision), $t_r = 10^{-13}$, max. # evals = 100B

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Sample 4-loop self-energy diagrams

Figure : [4Is] 4-loop self-energy diagrams with massless internal lines, cf., Baikov and Chetyrkin [1]: (a) N = 9, (b) N = 9, (c) sunrise/sunset N = 5, (d) Shimadzu N = 8

Results for 4-loop sunrise/sunset diagram

$$n(\varepsilon)^4 l_c^{S4} \sim -\frac{1}{576} \frac{1}{\varepsilon} - \frac{13}{768} - \frac{9823}{82944} \varepsilon + \ldots \approx -0.00173611111 \frac{1}{\varepsilon} - 0.016927083333 - 0.118429301698 \varepsilon + \ldots$$

where $n(\varepsilon) = \frac{\Gamma(2 - 2\varepsilon)}{\Gamma(1 + \varepsilon)\Gamma(1 - \varepsilon)^2}$ (Baikov and Chetyrkin [1])

	INTEGRAL I _c ^{S4}		EXTRAPOLATION			
l	Ea	T[s]	RESULT C_{-1}	RESULT C0	RESULT C1	
8	3.9e-14	30.2				
9	3.8e-14	34.3	-0.001735179254977			
10	3.6e-14	34.1	-0.001736115881839	-0.016918557081	-0.012276556	
11	4.1e-14	50.8	-0.001736111099910	-0.016927126297	-0.011837812	
12	4.2e-14	58.5	-0.001736111111130	-0.016927083216	-0.011842959	
13	1.5e-14	48.1	-0.001736111111109	-0.016927083381	-0.011842916	
	e mp	hExact:	-0.001736111111111	-0.016927083333	-0.011842930	

Table : Results 4-loop UV *sunrise-sunset* integral [5], Fig [4Is] (c) (on 4 nodes/64 procs. *thor* cluster), err. tol. $t_a = 10^{-12}$, T[s] = Time (elapsed user time in seconds); $\varepsilon = \varepsilon_{\ell} = 2^{-\ell}$, $\ell = 8, 9, \dots$, E_a = integration estim. abs. error [5]

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Results for 4-loop Shimadzu diagram

$$n(\varepsilon)^4 I_d^{S4} \sim \frac{5\zeta_5}{\varepsilon} - 5\zeta_5 - 7\zeta_3^2 + \frac{25}{2}\zeta_6 + (35\zeta_5 + 7\zeta_3^2 - \frac{25}{2}\zeta_6 - 21\zeta_3\zeta_4 + \frac{127}{2}\zeta_7)\varepsilon + \dots,$$

$$\sim \frac{5.184638776}{\varepsilon} - 2.582436090 + 70.39915145\varepsilon + \dots$$

INTEGRAL I ^{S4}	EXTRAPOLATION			
l	RESULT C_{-1}	Result C0	Result C1	
10				
11	5.18460577	-2.47956688		
12	5.18463921	-2.58230627	70.1367604	
13	5.18463922	-2.58243393	70.3982056	
14	5.18463923	-2.58243413	70.3991764	
Exact:	5.18463878	-2.58243609	70.3991515	

Table : Results 4-loop UV *Shimadzu* integral [5], I_d^{S4} , Fig [4ls] (d), (on KEKSC 64 threads); $\varepsilon = \varepsilon_{\ell} = 2^{-\ell}$, $\ell = 10, 11, ...$; iteration time is below 20 min. [5]

э

Conclusions

- Methods from PARINT and QUADPACK are applied to Feynman loop integrals.
- Extrapolation can be used to treat singularities.
- The methods are fully numerical and viable without change across many problem types.
- New results using multivariate adaptive integration with PARINT include: Magdeburg diagram (2-loop finite with massive internal lines), 3-loop UV-divergent self-energy diagrams with massive internal lines, 3-loop finite and 3-loop UV-divergent vertex diagrams with massless propagators, 4-loop self-energy diagrams with massless internal lines.
- Iterated integration with QUADPACK [10] and extrapolation were applied to a Mellin-Barnes representation for a 3-loop UV-divergent vertex diagram with massless internal lines.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Questions?

・ロト ・四ト ・ヨト ・ヨト

æ

BIBLIOGRAPHY

BAIKOV, B. A., AND CHETYRKIN, K. G.

Four loop massless propagators: An algebraic evaluation of all master integrals. *Nuclear Physics B 837* (2010), 186–220.

BULIRSCH, R.

Bemerkungen zur Romberg-Integration. *Numerische Mathematik 6* (1964), 6–16.

DE DONCKER, E., SHIMIZU, Y., FUJIMOTO, J., AND YUASA, F. Computation of loop integrals using extrapolation. *Computer Physics Communications 159* (2004), 145–156.

DE DONCKER, E., AND YUASA, F.

Distributed and multi-core computation of 2-loop integrals.

XV Adv. Comp. and Anal. Tech. in Phys. Res., Journal of Physics: Conference Series (ACAT 2013) 523, 012052 (2014). doi:10.1088/1742-6596/523/1/012052.

A B A B A
 B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

DE DONCKER, E., YUASA, F., KATO, K., ISHIKAWA, T., KAPENGA, J., AND OLAGBEMI, O.

Regularization with numerical extrapolation for finite and uv-divergent multi-loop integrals, 2016.

In preparation.

DE DONCKER, E., YUASA, F., AND KURIHARA, Y. Regularization of IR-divergent loop integrals. *Journal of Physics: Conf. Ser. 368*, 012060 (2012).

HEINRICH, G., HUBER, T., AND MAÎTRE, D. Master integrals for fermionic contributions to massless three-loop form factors. *Physics Letters B 662* (2008), 344–352.

• • • • • • • • • • • • • •

LAPORTA, S.

High-precision calculation of multi-loop Feynman integrals by difference equations.

Int. J. Mod. Phys. A 15 (2000), 5087–5159. arXiv:hep-ph/0102033v1.

LI, S., KAUGARS, K., AND DE DONCKER, E.

Distributed adaptive multivariate function visualization.

International Journal of Computational Intelligence and Applications (IJCIA) 6, 2 (2006), 273–288.

PIESSENS, R., DE DONCKER, E., ÜBERHUBER, C. W., AND KAHANER, D. K. QUADPACK, A Subroutine Package for Automatic Integration, vol. 1 of Springer Series in Computational Mathematics. Springer-Verlag, 1983.

SHANKS, D.

Non-linear transformations of divergent and slowly convergent sequences. *J. Math. and Phys. 34* (1955), 1–42.

SIDI, A.

Practical Extrapolation Methods - Theory and Applications. Cambridge University Press, 2003. ISBN 0-521-66159-5.

WYNN, P.

On a device for computing the $e_m(s_n)$ transformation. Mathematical Tables and Aids to Computing 10 (1956), 91–96. beamer-tu-

・ロト ・ 日 ・ ・ 回 ・ ・