GRACE manual

— Automatic Generation of Tree Amplitudes in Standard Models —

Version 1.0

MINAMI-TATEYA group

KEK Report 92-19
February 1993

GRACE manual

— Automatic Generation of Tree Amplitudes in Standard Models —

Version 1.0

T.Ishikawa!, T.Kaneko?, K.Kato?, S.Kawabata!,
Y.Shimizu' and H.Tanaka*

! National Laboratory for High Energy Physics(KEK),
Tsukuba, Ibaraki 305, Japan

2Faculty of general education, Meiji-gakuin University,
Totsuka, Yokohama 244, Japan

3 Department of physics, Kogakuin University,
Tokyo 160, Japan

4 Faculty of general education, Rikkyo University,
Tokyo 171, Japan

Acknowledgements

On the way to develop the program system GRACE we have received much encour-
agement and support from many people. We would like to thank our colleagues in
TRISTAN theory group, particularly Y. Kurihara, T. Munehisa, N. Nakazawa and J.
Fujimoto for discussions which were helpful for getting the system better. We are also
grateful to express our sincere gratitude to Professors H. Sugawara, S. Iwata and J. Ara-
fune for the encouragement. Discussions with colleagues in Nuclear Physics Institute
of Moscow State University and LAPP, Laboratoire d’Annecy-le-Vieux de Physiques
des Particules, with whom we have been collaborating on the automatic calculation of
Feynman amplitudes during these years, were very fruitful and useful for this work.

We are indebted to companies Fujitsu limited, Intel Japan K.K., KASUMI Co. Ltd
and SECOM Co. Ltd. for their kind supports and understanding our work. A part
of the calculations was performed on FACOM M1800, AP1000, VP series, S series,
HITAC S820, M880, 3050, HP 9000 and Intel iPSC/860.

This work was supported in part by Ministry of Education, Science and Culture,
Japan under Grant-in-Aid for International Scientific Research Program No.03041087
and No.04044158.

Chapter 1

Introduction

1.1 What is the problem ?

During the last two decades, it has been established that the gauge principle gov-
erns the interactions between elementary particles. In electroweak theory, leptons and
quarks are interacting through exchange of three kinds of gauge bosons, photon, Z°
and W=, The assumed gauge group is SU(2);, x U(1) and the original gauge symmetry
is broken by the non-zero vacuum expectation value of Higgs field. On the other hand
strong interaction between quarks is described by color SU(3) gauge group. All the
experimental facts seem to support these theories at present. Though it is still an
open question how these different kinds of forces are unified into more fundamental
theory, it is now of no doubt that these theories contain some truths and will remain
as effectively correct ones.

This success of gauge theories or standard models of elementary particles, implies
that we have definite Lagrangians and thus we can, in principle, predict any process
based on these Lagrangians in perturbation theory. When one wants to perform cal-
culation in this way, however, one meets a technical difficulty due to the complexity
of the interaction Lagrangian. This is particular to non-abelian gauge theory in which
we have three- and four-point self-couplings of gauge bosons as well as interactions of
unphysical particles such as Goldstone bosons or ghost particles in general covariant
gauge fixing. Hence even in the lowest order of perturbation, that is, in tree level,
one finds a number of diagrams for a given process when the number of final particles
increases. For example, we have only 3 diagrams for eTe~ — WTW~, but when one
photon is added, ete — WTW ~, then 18 diagrams appear even after omitting the
tiny interaction between e* and scalar bosons(Higgs and Goldstone bosons). Addi-
tion of one another photon, ete™ — WTW v+, yields 138 diagrams. Further if one
wants to make more realistic calculation around the threshold of W¥ pair production,
taking into account the decay of W*, say, W~ — e~ 7, and W+ — ud, then one has
to consider 24 diagrams for ete™ — e 7,ud and 202 for ete” — e D,udy. In unitary
gauge, as only physical particles appear in the Lagrangian, the numbers of diagrams
are less than those mentioned above.

2 CHAPTER 1. INTRODUCTION

One may think that it is enough to select several diagrams which dominate the cross
section. Even if one can find such dominant diagrams, one has to respect the gauge
invariance among this subset of diagrams. Usually number of diagrams in the gauge
invariant subset is not so small. For example, for the process ete™ — v,u, W W™,
we have 60 diagrams in all. Among them 30 diagrams form one gauge invariant set
and the rest does another one. Hence still we meet the same difficulty to handle with
many diagrams. In addition, there remains a possibility that the experimental cuts
imposed on the final particles renders the dominant diagrams to be less prominent and
all diagrams give somehow the same order of magnitude to the cross section. If this is
the case, one has to keep whole the diagrams in the calculation after all.

Through the numerous experiments done at ete™ colliders, we have learned that
higher order corrections should be included when we want to compare theories with
experimental data in detail. This implies that we have to calculate at least one-loop
corrections to a given process. As an example, consider the process ete™ — WTW .
To regularize the infrared divergence due to soft photon emission, we have to include
loop diagrams for e"e~™ — WTW ™ beyond the tree level, which contain virtual pho-
ton exchange and remove the divergence when combined with real photon emission
process. The requirement of gauge invariance among one-loop diagrams demands, in
turn, inclusion of other one-loop diagrams with exchanges of Z° W¥ or other possi-
ble particles. Then it is clear that the total number of diagrams becomes very huge
and it is almost impossible even to enumerate all diagrams. In many cases it seems
out of ability of mankind. For simple W-pair production, in general covariant gauge,
the number is around 200 diagrams in the same approximation stated above, but for
e~ D.ud it amounts more than 3,700.

Facing to the difficulty described above, we cannot help to find some ways to get rid
of. As a solution we can choose the following one: As diagrams are constructed based
on a set of definite rules, Feynman rules, it is natural to develop a computer code which
can generate all the diagrams to any process, once initial and final particles are given.
It should be able not only to enumerate diagrams but also generate automatically
relevant amplitudes to be evaluated on computers, in other words, create a FORTRAN
source code ready for amplitude calculation. GRACE (Ref.[3]) is such a system that
realizes this idea and help us to reduce the most tedious part of works.

1.2 What we can do with GRACE ?

Before introducing what GRACE system can provide, let us remind the standard way
to calculate cross sections at the tree level. Usually it consists of the following several
different steps:

1) Specify the process.
2) Choose appropriate models.

3) Fix the order of perturbation(at the tree level, this is unique).

1.2. WHAT WE CAN DO WITH GRACE ? 3

Enumerate all possible diagrams.
Write down amplitudes.
Prepare the kinematics for final particles.

Integrate the amplitude squared in the phase space of final particles, including
experimental cuts, if necessary.

8) Generate events so that the simulation of the process in a detector is available.
9) Check the results.

Among these steps the first three, 1), 2) and 3), are trivial matter. For the step 7)
one can rely on well established programs which are designed to make integration of
multi-dimensional variables. This is of no problem, except for CPU-time, once the
kinematics, step 6), is written so that the estimate of the integral is reliable within
required accuracy. The step 8) is related with the preceding step. The last step 9)
could be done to compare the results with other calculations or with approximated one.
Hence the most tedious steps are 4) and 5). GRACE is a system of program packages for
this purpose, namely, it carries out these most tedious steps on computers to save our
elaboration.

1.2.1 What GRACE provides us?
The present version of GRACE generates:

e All the diagrams for a given process up to one-loop, when the order of perturba-
tion is fixed(covariant gauge).

e FORTRAN source code which contains helicity amplitude of the process in the
tree level(covariant gauge).

e Default values of all physical constants, except for the strong coupling constant.

e Interface routines to the program package CHANEL (Ref.[4]), which contains sub-
routines designed to evaluate the amplitude.

e No kinematics is generated.

e Interface routines to the multi-dimensional integration package BASES (Ref.[6]).
e Interface routines to the event generation package SPRING (Ref.[6]).

e Test program for gauge invariance check of the generated amplitude.

e Any diagram and its amplitude can be omitted in the calculation by setting the
appropriate flags off. In the integration step the unitary gauge is the default(see
section 3.2.1).

4 CHAPTER 1. INTRODUCTION

What the user should do first is to tell GRACE the set of parameters which specifies
the process considered. It should include

1) names of initial particles,
2) names of final particles,
3) order of perturbation in QED, electroweak and/or QCD.

in the given format explained later.

When a job is started with the data file containing these inputs, GRACE constructs
all possible diagrams and creates an output file to draw all Feynman diagrams for the
convenience of the user to look them by eyes. At the same time a set of FORTRAN
subprograms is generated. These include those which are needed to calculate the
amplitude with the help of CHANEL, to integrate over phase space by BASES and to
generate events by SPRING.

After all the programs are successfully generated, the next tasks, which the user
should do before integration, are

1) to prepare the kinematics,

2) to fill up some parameters in a few subroutines, such as the dimension of the
integral,

3) to check the gauge invariance of the amplitude.

1.2.2 Structure of the system

In this subsection we show how the whole system of GRACE is constructed and how each
step proceeds. The system consists of the following four subsystems, whose interrelation
is depicted in figure 1.1.

(1) Graph generation subsystem
When initial and final states of the elementary process are given as the input as
well as the orders of couplings, a complete set of Feynman graphs is generated
according to the theoretical model defined in a model definition file. For the time
being QED, Electroweak and QCD models in the tree and one-loop level are
supported. The information of generated graphs is stored in a file as an output.

Reading the graph information from the file, the graph drawer displays the Feyn-
man graphs on the screen under the X-Window system or prints them on a paper.

(2) Source generation subsystem
From the graph information produced by the first subsystem, a FORTRAN source
code is generated in a form of program components suited for the numerical
integration package BASES.

1.2. WHAT WE CAN DO WITH GRACE ? 5

(3)

The source code is constructed based on our helicity amplitude formalism, which
consists of many calling sequences of subprograms given in CHANEL and its inter-
face routines.

In addition to these program components, the subsystem generates a main pro-
gram, by which the gauge invariance of the generated amplitudes can be tested.

4 N

Fig. 1.1 Structure of GRACE system
- /

Numerical integration subsystem

Combining the generated source code together with the kinematics routines and
the GRACE library, the numerical integration is performed by BASES to obtain
the total cross section. For this, however, one has to prepare the kinematics
routines, which are discussed in the next section. As the output of integration,
the numerical value of total cross section, the convergency behavior of integration,
one and two dimensional distributions of the cross section are given besides the
probability information in a file, which is used in the event generation. Looking
the convergency behavior carefully one can judge if the resultant value is reliable
or not.

Event generation subsystem
Using almost all the same subprograms in the integration, events with weight one

6 CHAPTER 1. INTRODUCTION

are generated by the event generation program SPRING. To achieve a high gen-
eration efficiency, it uses the probability information produced by BASES. Con-
ceptually, SPRING samples a point in the integration volume according to the
probability. If the probability information is a complete one, the sampled point
is exactly corresponding to a generating event. Since, however, it is impossible to
get a complete information numerically, the sampled point is tested whether it is
accepted or not. If it is accepted then its numerical values of integration variables
are passed to an user interface routine SPEVNT, where they are transformed into
the four vectors of the event.

1.2.3 How to do with kinematics ?

In order to get the numerical value of cross section, we make integration in the phase
space of final particles. As the integral is multi-dimensional, 4 for 3-body, 7 for 4-
body and 10 for 5-body process(if the cylindrical symmetry is assumed around the
initial beam axis), we usually use adaptive Monte Carlo integration packages. (In
our system BASES is assumed.) We have to express all momenta (or equivalently
invariants composed of them) of final particles by independent integration variables.
Generally speaking, the integration routine feeds a set of random numbers in the space
of given dimension. Let us denote these random numbers as

X(I),I=1,---,NDIM,

and assume their values are normalized in, say, [0,1]. (In BASES, the upper and
lower bounds for X(I) can be arbitrary numbers.) Then we have to translate these
variables into four-momentum of final particle, say J-th particle, P(1,J), P(2,J),
P(3,J), P(4,J) of total N particles (in GRACE, P(4,J) is the energy),

X(I) =P(k,J). K=1,---,4, J=1,--- N

This is known as kinematics for the given process. This mapping is not always unique
and in some cases a single value of X(I) may correspond to multi-value of particle
momenta.

GRACE, unfortunately, does not give the kinematics in an automatic way. The
reason is that the present popular integration packages, such as BASES or VEGAS, utilize
a special algorithm to search for the singularities of the integrand. The matrix element
squared, the integrand, becomes singular when the denominators of propagators of
internal particles become very small compared with the typical energy of the process
considered. This happens when a mass of an internal line is very small. As is well
known, if a singularity is running along the diagonal in a plane of two integration
variables, these programs cannot give reliable estimate of the integral, because they
fail to catch the singularity at all. In order to get good convergence of the integration
over many iterations, all the singularities must be parallel to the integration axes. This
means that these peaks located in the space of kinematical variables, are mapped onto

1.2. WHAT WE CAN DO WITH GRACE ? 7

the line of constant value of some X(I). In order to do this, we have to choose very
carefully the transformation between random numbers and kinematical variables. The
typical kinds of singularities we meet in real calculation are as follows;

e mass singularity
e infrared singularity
e t-channel photon exchange

e resonance formation(decay of heavy particles)

(Precise description of how to deal with these singularities will be found in section 2.6).

In some processes the number of independent variables is greater than that of
singularities, and one can easily find a kinematics which is suitable to make them
smooth. If this is not the case, however, one may not be able to find such good
kinematics to avoid diagonal singularity even after much efforts. Hence it is quite
difficult to give the general kinematics which is capable of dealing with all kinds of
singularities at once, or a single set of transformations.

The drawback adherent to the present integration packages mentioned above made
us to hesitate to generate a kinematics, because it must be applicable only to limited
processes. If GRACE could generate such kinematics, someone might apply it to a cross
section which is so singular that the integration package fails to catch any singularity. It
returns an answer which looks like to converge well at the first sight, but is completely
wrong. Hence we decided not to generate kinematics automatic way, but leave it to
the user.

1.2.4 How to make preliminary check ?

Suppose we have a kinematics for the process to be considered. The first task we should
do is to check the generated amplitude and confirm that it is in fact correct one. We
have two methods for this check;

1) Gauge invariance check.

This is done by changing the gauge parameters numerically for v, Z° W# and
gluon and examining if the value of the total amplitude remains the same within
the double precision. The main program for this test is generated by the system.
When quadruple precision is supported on user’s computer, invariance check in
this precision level is also possible. One should, however, notice that in some
special cases the gauge invariance is trivially satisfied and this kind of check
cannot be helpful(simplest case is such that only the vector or axial couplings
to on-shell massless fermions appears in each diagram).

2) Lorentz invariance check.
Since all the four-components of particle momenta are numerically given, it is

8 CHAPTER 1. INTRODUCTION

possible to look if the squared amplitude does not change by Lorentz transforma-
tion. For this one has to change the definition of frame inside of the kinematics
routine written by the user.

These tests can prove correctness of both amplitudes and kinematics. If either of these
latter two has some errors, both invariance checks must fail. Note that, however, these
cannot be responsible for the correctness of the overall factor multiplied to the squared
amplitude(powers of 2, factor 2, Jacobian in the kinematics and so on).

If everything is O.K., then you can proceed to make phase space integration.

1.3 How to use this manual

This manual is composed of three kinds of objects, theoretical background for calcu-
lating the cross section of elementary process, usage and technical details of the GRACE
system. Throughout this manual we take the tree level process ete™ — WTW v as an
example, including the e-scalar boson interactions. The real FORTRAN source code
for this process is attached in the relevant sections as well as the results of calculation,
which might be a great help for understanding the practical use of the system.

Structure of manual

The purpose of chapter 2 is to present the theoretical background of the system.

After notations, Lagrangians and renormalization prescriptions are specified, how am-
plitudes and color factors are calculated is described. The Feynman graph generation
is briefly discussed from the graph theoretical point of view for the completeness of
this manual.
Only the kinematics part is to be prepared by the user, where the structure of singu-
larities in the phase space should be taken into account. The possible singularities, to
which the user may face, are also discussed in this chapter. Finally the algorithms of
multi-dimensional integration package and event generation package are presented.

Chapter 3 is devoted to the function of GRACE system, where full description
about input and output of each sub-system is specified. Specification of subprograms
for kinematics is also given here. This part is independent of the computer system, on
which GRACE system is implemented.

In chapter 4 the usage of GRACE system on UNIX system and FACOM main frame
computer is described. GRACE system is also supported on some parallel computers.
Usage on the parallel system INTEL iPSC/860 is presented as an example.

A variant of GRACE system for vector computers is described in chapter 5. The
difference in the input and output specification of the vector version from the scalar
one is mentioned. As an example usage of the system on HITAC $820/80 is presented.

In chapter 6, detailed description of Feynman rules is given. These rules are given
to the system through a model definition file. The format of this file is also shown.

Chapter 7 is devoted to describe subroutines in CHANEL library and interface pro-
grams between CHANEL and generated code by GRACE.

1.3. HOW TO USE THIS MANUAL 9

The interrelation among the contents of chapters is shown in figure 1.2(c).

Traveling guide of this manual

Those serious users, who want to know how GRACE system is constructed and works
before use, are recommended to read whole manual form the first page to the last. This
will be the best but tedious way to understand GRACE system.

If you find interest only in physics and use conventional computers, you can start
from chapter 4 and skip chapter 2 except for sections 2.1, 2.6 and chapters 5, 6 and
7 as shown in figure 1.2(a). When you intend to use a vector computer, you are
recommended to start from chapter 5 on reference to chapters 2 and 3 as in figure
1.2(b).

Limitations of the system

This system has several limitations which are summarized in appendix C. It is
recommended to read this appendix before using the system.

How to obtain GRACE system

GRACE full system works on UNIX workstations (at least HP and SUN) and main
frame computers (FACOM and HITAC). In addition to these computers, the numerical
subsystems of GRACE are applicable to VAX VMS system, parallel computers (INTEL
iPSC/860, FACOM AP1000 and NCUBE), and vector computers (HITAC S series, FACOM
VP series, NEC SX and CRAY). The system requires FORTRAN77 and PASCAL compilers for
installation. For drawing generated Feynman graphs, it requires X1ib or GKS graphic
library.

The system is available when requested through e-mail to grace@minami.kek. jp.
Other information or question is welcome to the same e-mail address.

10

CHAPTER 1. INTRODUCTION

Fig. 1.2 Interrelation of chapters

~

Chapter 2

Theoretical background

In this chapter we describe general theoretical bases and ingredients used in the GRACE
system. It covers conventions, definition of cross section, models, helicity amplitude
formalism, calculation of color factor, method of graph generation, kinematics and
the method of numerical integration. As the system automatically generates helicity
amplitude for any tree process in the framework given below, one has to know the
outline of these theoretical backgrounds.

2.1 Definition of the cross section

The original unrenormalized Lagrangian density is divided into free and interaction
parts as
£($) = L:f'ree()(x) + ‘Cz’ntO(J;)y (21)

where free part contains all the quadratic form of fields including gauge fixing term.
Since all the models we are considering are renormalizable, the Lagrangian can be
reexpressed in terms of the renormalized quantities. Thus we can write

L(x) = Liree(x) + Lins(x) + 0Lc(x). (2.2)

Here the last term represents the counterterm Lagrangian(in the current version of
GRACE this part is of no use, because no loop amplitude can be generated).

Denoting the substantial interaction as

we define the S-matrix,
S = T* expli / A4 £om(2)], (2.4)

where T™ is the usual chronological operator, introduced when Eint contains derivative
of fields. Expanding the exponential, we have a perturbative series with respect to the

11

12 CHAPTER 2. THEORETICAL BACKGROUND

interaction Lagrangian

o) iN i A ~
S = 1+NZ:1M / A4z - / AN T* [Lomt(21) Lont(22) - Lomp(zn)]. (2.5)

The scattering matrix 7T is defined by an operator relation
S=1+1T. (2.6)
By taking the matrix element between initial and final states |i) and |f) we have
Sgi = b5i + i(2m)*6*(Py — P)T¥s, (2.7)

where P; and Py are the total four momenta of initial and final states, respectively.
The cross section is defined as

0= o [aryen) 6 (P — P) Y ITyP (2.8)

flux o

Here ‘flux’ is the flux of incident particles and dI'; is the volume element of phase space
of the final states. In our convention we define this element for any kind of particle as

Ny

dng'
ar, =] -——% 2.9
! ,:Hl 2qoi(2m)* (2.9

where ¢; = (gi0, i), ¢ =1,---, Ns are the four-momenta of N; particles in the final
state. Then the initial flux is normalized as

flux = vre12p102p20, (2.10)

where p1g and pog are energies of incoming two particles and v, is the relative velocity
of these two.
Thus the final form of the cross section for the process

P1+p2— ¢+ G+ +gny, (2.11)
is given by
7= L / ﬁ ﬁ(zﬁ)%4 (pl +p2 — %‘:Q) > i T (2.12)
Vre12P102P20 2(]z0(27T) i—1 ’ ht hs 7

Here helicity states of final particles(hy) are summed and those of initial state(h;) are
averaged for the simplest case.
Though the FORTRAN output from GRACE automatically provides the quantity

MZZEMﬁ (2.13)

hy h;

2.2. METRIC AND CONVENTIONS 13

as the default output, one can select any helicity state in both initial and final states
by changing the part of the program corresponding to these summations as explained
in section 3.2.1.

If the incident particles collide in the center-of-mass system, the flux factor is given by

flux ~ 2s, (2.14)

neglecting their masses, where s = (p; + p2)? is the square of total energy. When these
particles are partons with energy fractions z; and z,, like in pp or pp colliders, it is
given by

flux ~ 2(z129)s, (2.15)

and the cross section Eq.(2.12) is that of sub-process.

2.2 Metric and conventions

I) Convention for Feynman rules.

The scattering amplitude T%; is constructed according to the Feynman rules.
There are some different ways to decompose the factor " in Eq.(2.5) and assign
to various parts of a diagram. The convention we use in GRACE is the following:

1) Let us denote a generic field as ¢. The propagator is defined by

Dr(p) =i [d'z e #=(0|T(¢(x)9'(0))[0). (2.16)
Thus for fermion we have
1
S =—— 2.17
0= (217)
for scalar particle
1
A = 2.18
r0) = — (2.18)
and for gauge boson of mass M
Gw(q)
Dpu(q) = £ 2.1
Fu (q) —q2+M2—i8’ (9)

where G, (q) is a symmetric tensor which depends on the gauge condition
used. Its explicit form will appear in section 2.3.

2) The vertex is defined as the Fourier transform of the interaction Lagrangian,
/d4x e P L) (2.20)

For example, photon vertex of charged fermion f is given by

Qs (2.21)

14

1I)

CHAPTER 2. THEORETICAL BACKGROUND

3) For a loop diagram with L loops we assign the following loop integration(
in n-dimension)

L 4,
/ l:Hl @i (2.22)

By this convention we can save the number of i because after making Wick’s
rotation each loop integration will produce an ¢ to compensate that in the de-
nominator. Simple counting will show that iV in Eq.(2.5) can be divided into

three parts

N =g N (2.23)

where the first ¢ is regarded as that of i7", the second is absorbed into the definition
of propagators and the last into loop integrals.

Metric

The metric convention is as follows;

1) the space-time metric g, is defined by
go =1, gij =—0; for 4,7 =1,2,3, (2.24)
2) the components of a four-momentum is given by
p = (po, P), (2.25)
and the inner product of two arbitrary four-momenta, p and ¢, is
P-q4=pog — P 4q- (2.26)
3) the 4-dimensional Dirac matrix satisfies

YuYo + VoV = 29uw, pv=0,---,3 (2.27)

and 75 is defined by
Y5 = 1Y0V17273, (2.28)

as usual. The hermite conjugate of y-matrix obeys

Yo = Yus (2.29)
hence
Yoriv = —s. (2.30)

In GRACE system, CHANEL calculates Dirac matrices in a numerical way, but
specification of their explicit representations is not necessary.

2.2. METRIC AND CONVENTIONS 15

IIT) Normalization of wave function.

1)

Massive Dirac spinor
The Dirac spinor is normalized as

ﬂ(p, 3)’}’0U(p, 3,) = 2170535',
u(p, $)v0v(p, ") = 2podss, (2.31)
hence the projection operators are

1+ 754

upulp,s) = I gm)
o, i) = L m), RED

where u(p, s) and v(p, s) are spinors of particle and anti-particle with mo-
mentum p and spin vector s. The latter satisfies

s2=—-1, s-p=0. (2.33)

When one specifies a helicity state, the spin vector has the form

s:h-<M,@n>, n="L2 (2.34)

m’m |

with h = £1.

Massless Dirac spinor
As massless fermion, we know only left-handed neutrinos. Denoting its
spinors as u,(p) and v,(p), the projection operators are then

w@)np) = %

L+

w(p)o(p) = ——F (2.35)

Spin summation of massless gauge boson.
Polarization vector of photon or gluon eff‘)(k), A =1,2, k2 = 0, satisfies

k-eMk) =0, eMk)- X (k) = by, (2.36)
spin summation is given by

2 k,n, + k,n k,k
}:O‘)k()‘)k—— N it VIR 2 TR 2.37
= Ell' ()GI/ () gllV k-n n (k . n)z? ()

where n is an arbitrary constant vector. As CHANEL uses helicity formalism,
it defines an expression of €{)(k) and the spin summation is consistent with
this formula as shown in section 2.4.

16 CHAPTER 2. THEORETICAL BACKGROUND

4) Spin summation of massive gauge boson.
Denoting the polarization vector of W* or Z° as eM(k), A = 1,2,3, k* =
M?, we have

E-eMNE) =0, eNE&)-eM (k) = —dn, (2.38)
and the spin summation
) () kuky
Z € (k)ez/ (k) = —Guw + M2 (239)
A=1

2.3 Specification of models

Now we turn to the details of the models prepared in the system. In the present version
of GRACE we have included only standard ones;

e QED
e Flectroweak
e QCD

Although the first one is, of course, a part of the second, the system is designed so that
one can choose pure QED. The models are selected by giving the order of coupling of
each model. It should be noted that the orders of couplings for electroweak and QED
models are used exclusively, i.e. they should not be given at the same time. (If one
generates amplitudes in electroweak theory, then one can choose only QED part by
using diagram selection flag.) Since the current version of GRACE can provide only
tree amplitudes, the counterterm is not needed at present stage but we described the
whole renormalized Lagrangian in anticipating the forthcoming version which includes
1-loop diagrams.

2.3.1 QED
The unrenormalized Lagrangian density can be divided into
EQED = EfreeO + Linto- (240)
The free Lagrangian Lyyeeo is
—n.. 1 ,
EfreeO — Z [l/)f]f) (7/)/ -0 — me)w(()f) - ZFHVOFS‘ + £90U967 (241)

f

where f indicates the fermion f and 0 means unrenormalized quantity. Note that the
summation over f also implies the sum over color degree of freedom for quarks. The
interaction part is given by

Lino = 3 e0Q 5 7,00 Al (2.42)
f

2.3. SPECIFICATION OF MODELS 17

The electromagnetic charge of a fermion f is given by eo(); with the positron charge
eo. Thus up-quark has Q,, = +2/3, down-quark Quown = —1/3, electron Q. = —1,
and so on. The gauge fixing term, written in renormalized fields, is

1

Loguoe = d-A)?, covariant gauge
gaug 9
Q
1 \ .
Loauge = —%(n - A)*, axial gauge (2.43)

where « is a gauge parameter and n is an arbitrary constant vector. If n? = 0, then it
is called light-cone gauge.

Introducing renormalization constants Z ¢, Zo¢, Zs and dmy and replacing all the quan-
tities in this Lagrangian by renormalized ones,

Yo = Zogpthy, Ap = Z3A,,
e = eZigZyp 257, (2.44)
mygp = my+0my,
we can rewrite the original Lagrangian by renormalized quantities and we have
Loep = Lfree + Lint + 0L, (2.45)
with

—(f) /; 1 v
Loree = L0 @@= mp) ¥ — JFuF™ 4 Ly
f

Lint = Z le@(f)%q?/,(f)Au
f

6L. = 302" (i — mp) 6\ — 3 Zopompp Dy (2.46)
f f

1 _
— Z(SZ:),FH,,F“V + Z leéZlf@b(f)'yﬂgb(f)A“.
f

Here the counterterm Lagrangian contains
Zyy = 14062y
Zy = 1407 (2.47)
Zvyy = 14 6Zyy.
Note that the gauge invariance or charge universality implies

Zlf = Z2f. (248)

18 CHAPTER 2. THEORETICAL BACKGROUND

The renormalization conditions to fix these constant are well known, and will be found
any standard textbook of quantum field theory.

The propagators are as follows; for fermion it is given by Eq.(2.17), for photon,

G (q)
D, (q) = —2222 . 2.49
e (2.49)
The numerator takes the following forms depending on the gauge condition:
Guw(@) = —-gw+(1-0a) q”gy, covariant gauge (2.50)
q
(Z;tnll =+ ql//n’ll 2 2 qu‘]u .
Guwle = —gpt+——F—-—n"+0a9")—/—. axial gauge (2.51
(@) = g+ BETEE (o 1 agt) D (251)

2.3.2 Electroweak theory

The standard model of SU(2);, x U(1) gauge theory, originally proposed by Glashaw-
Weinberg-Salam, is much more complicated than QED. Quarks and leptons are classi-
fied into left- and right-handed, which transform under the gauge group in a different
way;

t
<Z>L7 <Z>L7 (b>L7 UR, dR7 CR, SR, tR7 bR'

Two kinds of gauge boson fields are introduced which transform as SU(2)-triplet and
-singlet,

triplet — A (z), A2(z), 4> (z)
singlet — B,(z).
The Higgs field is also a doublet
L (ig"(z)
O(r) = — () . 2.52
Before giving the explicit form of the Lagrangian, we like to make a comment on the

parameters of the theory.

Constant parameters

The most fundamental constants in the Lagrangian are two coupling constants of SU(2)
and U(1) gauge interactions(g and ¢’, respectively) and the vacuum expectation value
of the neutral Higgs scalar,

9,9, (8%).

2.3. SPECIFICATION OF MODELS 19

In the classical level the heavy boson masses and the electric charge are given by

1 1
My = 1(g2+9’2)<¢°>2, Mﬁvzig2<¢°>2,

/
e = 9 (2.53)

respectively. Thus the alternative set of parameters is
€, MW) MZ7
which are physically observable quantities. The weak mixing angle sin? @y, is defined
through the relation
sin® By =1 — 2. (2.54)
In our convention e, My, and My are used as input parameters. However, as the
precise value of W* boson mass has not yet been measured, the muon decay width,

I',, is more reliable than My at present. Using the above set of constants one can
express the width in a form (up to any order of perturbation)

T, = My - f(o, M /M3), (2.55)

(with possible dependence on Higgs and t-quark masses, my and m;). Solving this
equation and using the experimental value for I',, we can get My as a function of

other parameters,
MW = MZ . h(Oé, FH/Mz) (256)

In this sense the set of constants
€, Fua MZ7

can be used as the input parameters of the theory.

Lagrangian

We follow the formulation given in Ref.[1]. As the full Lagrangian has very complicated
structure, we divide it into two parts; the first has the same form as the classical
Lagrangian containing physical objects and the second is related to the gauge fixing,

EELW = Ecl + Egauge- (257)
The first part is further decomposed into several terms,
La = Lgo+ Lro+ Lro + Lo, (2.58)

where Lgo is the gauge boson part, Lpg the fermion kinetic part, Lgo the Higgs scalar
part and Ly the fermion-Higgs interaction.

20

CHAPTER 2. THEORETICAL BACKGROUND

1) The pure gauge boson part contains only SU(2) and U(1) gauge fields,

1 1
»CGO = _ZGZV() Zyo - ZF;u/OF;WOa (259)
where
wao = Oudy — &/AZO + gOEabCAZOAlc/O’

F;wO - 8/tBV0 - aVB/t())

are field strengths for gauge fields A§,(a = 1,2,3) and B, respectively.

2) The kinetic part of fermions, both quark and leptons, including gauge interactions
is given by,

Lpo = Z Yro(if + goTu Ay, + 9 0ToBuo)¥ro + Z l/_)go) (i@ + 9¢'¢ToBuo) l/)go)a
L

f=i,I
(2.60)
where ¢ro and ¢go represent SU(2) doublet and singlet fermion fields, respec-

tively, with

1/)(1)

o= (18] (261

Vo
To specify a fermion we use the subscript (L) and the superscripts (I), (i) and
(f) which stand for left-handed fermion doublet and upper, lower and all kinds
of fermion, respectively. The coupling constant gy corresponds to SU(2) and gj
to U(1) gauge interactions and T,’s are related to SU(2) Pauli matrices, T, =
To/2.(a = 1,2,3) and Ty = Q — T3 where @ is the charge operator.

3) The Higgs scalar part with gauge interaction is

, 2
»CHO — ‘<8u - igoTaAZO - 29203“0) (I)O + ME(I)I](I)O — AO((I)I](I)O)2 (262)
4) The fermion-Higgs interaction is
Lato = — D fo U ®ovay — 2 fo W5q (ima®5) ¥ + hc., (2.63)
i T

where féi_) and fél) are Yukawa coupling constants. Two new combinations of
fields, \Il%()) and \Ilgo), for left-handed fermions are introduced so as to make the
mass matrix diagonal,

: AC)
\If%()] _ (ZIUlebLo),

U5
(1)
I
‘I’S:o) = (d)f[{ (i))a (2.64)
Zi UIi Il/)LO

where U;; is the mixing matrix for quarks. In the current version of GRACE this
mixing is not supported, namely the unit matrix is assumed for U;;.

2.3. SPECIFICATION OF MODELS 21

The symmetries are broken by the vacuum expectation value of the Higgs scalar field

(I)Oa
1 iX+
o L (0o) _ 2.65
0 V2 \Wo + ¢o — iX30 ()
Here,
1) wg is the bare vacuum expectation value,

2) ¢y is the physical Higgs scalar field,

3) x30 is the neutral Goldstone boson,

)
)
)
4) xg is the charged Goldstone boson, defined as

Xo = \}Q(XIO F iX20)- (2.66)

We introduce the physical gauge boson fields by
1

1
ZpO = ﬁ(QOAiO - g(,)BNO)a (267)
90 + 9o
1 I 43
AuO = ﬁ(goAyO + gOBuO)'
90 + 9o

Collecting all of these, we get unrenormalized Lagrangian expressed in terms of physical
particles. The bosonic part becomes

1 1 :
Loy = _§|auW;jE) - 8,,W,j;)|2 N Z(aﬂz’/o o 8"2”0)2 B Z(aNAVO - aVAH0)2
g > 3
(o 985 — 9391904 (0aW30) W0 Zso + (8aWs0) Z1o Wi
90 + 9o
+(90Zs0) W s Wio }

+901(0aW5o)W 0 As0 + (0aWo) Ayo Wit 4 (9aApo) W Wi }]
2

g _

T2t ge +O e [(9asGrs — 9ar988)W oW o (95 Zy0Zso + g AvyoAso)]

0 0

+(290p9vs — Yo 985 — Yas98+v) 9090 Wao W a0 Ao Zso

2
g o
+(9apgys — gavgﬂﬁ)_; WaoWao W0 Wi, (2.68)

22 CHAPTER 2. THEORETICAL BACKGROUND

and the fermionic part is

Lro = Zz‘«/?éf’méf’+e02Qf«/76”w3f’Auo
f

— Y5 1— _
\/—Z<¢0 UIzM 577/}(()) o+7>/}o Uirvu 5 57,11(()1)WN0>

V98 + 95

2

+ Z% Vu [T3f(1 —) — 2Q; 7+ ,Z]% 10, (2.69)

where v is the Dirac spinor Wthh we define

— 1+
Yo = ro+ Yro = 275 Yo + 2751/10. (2.70)
Further we have introduced the bare electric charge by
9090

ep = 2% (2.71)
V9o + 90

and @y is the charge of f-th fermion in the unit of positron charge e;. As the Higgs
scalar part becomes complicated, we divide it further into four parts,

Lio=L2 + L8 + %)+ Ly (2.72)

The first part contains kinetic terms of scalar particles and bilinear terms in fields,

1 1 _
Liy = +5(0u60)” + 5 (@x30)’ + (Bxs) (Do)

1
+M;, OW Wi+ MéozuOZuo

1 1
- 290U0[W (auXO) + W;ﬂ)(auXJ)] ~ 35 V 9+ 962UOZMO(8uX30)v (2.73)

where the bare mass terms of gauge bosons are introduced by

1
Mz, = 1(9§+962)v§,
1

The cubic and quartic parts in fields contain interaction terms between Higgs and gauge
fields,

1
Lin = 500Wib(X%o B, 60) + goW (x5 9, o)

“ 1 “
+35 QOW o(X30 8,, Xo) — 290W, o(X30 0y Xg) + 5V 98 + 98 Zu0(x30 Oy b0)
; o2 . !
i 98— g6 9096 (2.75)

<> <>
—==Zu(xo 04 x3) + ———=4uxs 94 x7),
2\/98 + g VIR + 98

2.3. SPECIFICATION OF MODELS

Ly = 19 §W W a0(200¢0 + &5 + 2X4 X0 + X30)

1 9 _90)2

23

1
\/T Zu0Zu0(Xo Xo) + g(gg + 962)Zu02u0(21’0¢0 + 95 + X30)
g g

. 9090(95 — 9¢
+ﬁAu0AuO(X(J)rX0)+ M

90 + 90 gg + 9(,)2 MOZ”O (XSFXJ)

g g . .
- ZuW, oXo (x30 + 1vg + i¢h)
V 9% + 90
1 9090
95 + 9¢°

+ (Z W, 10X0)(X30 — 1y — i¢0)

1 g59 AW L
_ETg'z(oXo) (X30 + v + igho)
90 T 90

—%%(A WaoXa) (Xs0 — ivg — igdp).
90t 96
The last part is the potential term for Higgs particles,
Lyo = vo(ug — Movg)do + (115 — Aov5) X3 Xo
508 = 2o + (8 — Do)

2
—200)\0(¢0X§Xa) - UO)\O(¢0X30X30) - Uo)\0¢g

—20(x5 X0)* = Ao (X8 X0)X30 — Ao (X5 X0)90
1 1 1
—Z)\ngo - 1)\0% - 5)\0X§0¢g~
The fermion mass part yields,

Ly = _me%()f)w(()f)
f
5 SUULIUE = A7) + () + 1"l xi
i,
‘*Z% a8 = 1)+ U8+ 1l

o (f)
— D) T=bo¥y Y
Zf: \/5 0% 0

(2.76)

(2.77)

24 CHAPTER 2. THEORETICAL BACKGROUND

. () . (1)
ifo”) ifo o
+)) = -y —F . 2.78
Zi: V2 X30%o V5o XI: V2 X30% V5¥o ()
Next we turn to the gauge fixing of the original Lagrangian. This contains unphysical
particles, Goldstone bosons and ghosts, that is, the gauge fixing term and the Faddeev-
Poppov ghost parts,

Egauge - EGF + L:FP- (279)
The gauge fixing term is written in the renormalized form as
1
EGF = —E((‘)ﬂW; + OéwMWer) . (8/‘le + OleWxi)
1 2 1 2
_E((‘)MZ“ + aZMZX?,) — E(G“Au) . (280)

The last part, Faddeev-Poppov ghost, is given by
Lrp = —5§5BR5(3;¢W,:0 + awoMwoX,) — 565BRS(8uW,jB + awoMwoxg)
_EgdBRS(auZuo + azoMzoxs0) — EOA(SBRS(auAuO + BoMzoxs0), (2.81)

where every quantity is bare and the BRS transformations for the fields are defined by

9o
0prsWyy = Oucy £ W[W,%(gocf + 90¢h) — (90Zuo + 9o Auo)Cy]
90 T 9o
. 9
ig _ _
(SBRszuo = _ﬁ(W;jE)CO — Wﬂoca—) + aucg,
V90 + 9o
19094 _ _
5BRSAuO = —%(W;BCO — W/‘OCOJF) + aucgl,
V90 + 9o
2 L 2
g _ _ V90 t 9o
dprsPo = —EO(X(J)FCO +Xocg) — TX?,OCOZ, (2.82)

90)
53R5Xoi = +5[(v0 + ¢0)C§ + XBOC(:)t)] + WX(T[(QS - 962)00Z + 290960A)],
90 T 90

V9% + 95

2

9o _ _
(vo + ¢o)cg — == (Xg ¢o — Xo €4)-

dBRSX30 9

Here the original ghost fields cj,c) are replaced by

Z].

_ 3 10
Co — P+ g° - (905 — 9oCo)
1
A ! .3 0
¢y = ———=-(gpCy + 9oCy), 2.83
0 P+ g° (9och + goco) ()

2.3. SPECIFICATION OF MODELS 25

in the same way as the mixing between physical Z° and photon fields. Thus the
Faddeev-Poppov ghost part, divided into bilinear and cubic terms in fields, is given by

Lpp =LY%+ LY, (2.84)
where
LY = —& (@ + awoMpo)cy — & () + awoMiyo)ed
_502(83 + aZOM%o)C(? - EOAaZCBLl - EOA(IBOMI%VO)COZ7 (2.85)
and
Eg}) = AW%[‘%@? : COZ - 8”602 ¢] — AW;X)WME; ’ cg - auéoz ’ C(ﬂ

w
V95 + 98 g8 + 98

g A A A1 g At A A+
+ieoW 0[0uCy * € — 0,8y - ¢ | — ieoW 4[0,Cy + cg — 0uCy - ¢4 |

2
tg _ — — . _ - _—
+—=—Z0[0,c5 - ¢y — Oulq - 5] + ieoAp[0uCy - g — Outy - 5]

\V 9o+ 90
) —awoMwo(—9¢ + 93) __ _
+zxf{[2((,)2 O)CO cOZ — awoMwoeot, 064
24/95 + 96

—|—%MZOQOEOACO + %Mzogoégco]
+iXo [Jrawof /Wz(;gi +%) & ¢ + awoMwoeoly ¢y
90 T 90
—?OMZOQOEOACSF — %MZOQOE(?CSF]
u?”hwwﬁ%ﬁywwﬂ—%?Mm%%W%+%®]
= M58+ g e~ P M5+ ol (250

According to our choice of basic parameters, we have to rewrite all the bare constants,
90, 9o and v, by bare parameters, eq, Mzo and My.

go = €p

26 CHAPTER 2. THEORETICAL BACKGROUND

vg = — M2, — MZ,,,
0 es Mo Al wo

Ty = oty — Aovg)do (2.87)
N — eg Mz, m2 eoToMzo
. = _
8 Mo (M3, — M) Ho Mo/ M2, — M2,

Ng = m%IO/27

0 = V2mpo/vo.

Here Tj is the tadpole contribution. After renormalization, it must vanish. By these
replacements we can get the final form of the bare Lagrangian.

Renormalization

We have to mention that several kinds of renormalization schemes have been proposed
and used so far. The main difference among them lies in the following fact. When one
renormalizes the wave functions before the symmetry is broken, one puts

a 1/2 4a
A = ZPAs,

By = Z’B,,
’@bLO = Z}//ZZ/}L, (288)

I ni/2 (I
W = A
i i1/2. (i
= 7,
(1)
Yr = <zﬁ)) : (2.89)
L

Hence five constants Zw, Zg, Z1, Z}({) and Z}(g) appear.

with

On the other hand, after the symmetry is broken, one has to introduce more renormal-
ization constants corresponding to fields of physical particles, that is,

1/2
W = Zywi,

(56) = (24 Z2) (3) (2.90)
Z, Zga Z4z) \Zu

I Nni/2 (I
vio = Zp) "y,
[i)1/2 , (2
vie = Zp P,
Ve = ZyuR), (2.91)

2.3. SPECIFICATION OF MODELS 27

% 1)1/2 (4
oo = 2P,

In GRACE system we use the second scheme as our convention.

The Lagrangian is renormalized by the following prescription:
1) Replace the bare constants by
My, = My + My,
My, = Mj+ My,

my, = my+omy, (2.92)
Mgy = My + 5mf,
€y = Ye.

2) Rescale gauge fields(Z°, W=, v) according to Eq.(2.90).

3) Rescale left- and right-handed fermions by Eq.(2.91). In the presence of quark
mixing, Z; and Zg become matrices which connect bare and renormalized fermion
fields of the same charge:

o = (283),, v

fl
7(f) _ 7(f") Zl/2T 293
VR, Lo . 1/’R,L(R,L)f,f- (2.93)
4) Rescale Higgs field by
¢o = 7, 9. (2.94)

5) Renormalization of bare gauge parameters appearing in Eq.(2.81), awyo, azo and
B9, are defined as follows;

awo = awZy Z7 1+ M, /My,

aze = azZyiZs"%)\J1 +sME/ M3, (2.95)
b = azZi; 2" /1 +6Mz/M3.
6) Rescaling of Goldstone fields xi, x30 is defined by
Xo = Z/°x7,

Xso = Zuxse (2.96)

28 CHAPTER 2. THEORETICAL BACKGROUND

7) Rescaling of ghost fields are defined by

Cac = Z3Ci,
A4 7 7 A4
Co) _ <gzz,%ZA) <C) 997
<661 Zaz,Zan) \c*)’ (2.97)
& o= ¢, &=, &=

Summary

Now we can re-express the original Lagrangian Lgrw by both renormalized fields and
constants. It is straightforward to divide it into free and interaction parts. The free
Lagrangian L¢,. is obtained from the bilinear terms in fields in Lgrw by letting all
rescaling factors to be unity, Z; = 1, and all mass counterterms to vanish, dm? = 0.
Thus we have

Liree = W} [g‘“’ (02 + M2) (1 _) 8,0]W,,
aw
1
s [gﬂ”(ag +M2) - (1 -) 8,0]
2 Oz

414, [gwag - (1 - —) 8,0]A

a4

EX IO~ m o — L H(32+ m)o

X" (5 + awMy)x™ — ;X:’)(ai +azMz)xs
—" (02 + awM3z)c — ¢ (02 + awMZ)ct — ed%ct
—%(82 + azM2)c? (2.98)
and define the interaction part by
Lint = Lurw — Liree, (2.99)

which contains all the counterterms as well as tree interactions. All the Feynman rules
generated from the renormalized Lagrangian are collected in chapter 6, except for the
counterterms. The latter and the renormalization conditions will be found in Ref.[1].
They are too complicated to be reproduced here.

The Feynman gauge is defined by
oaw =agz =y =1, (2.100)

while the unitary gauge is chosen by letting all these parameters (except for photon)
infinity,
aw = az = 00. (2.101)

2.3. SPECIFICATION OF MODELS 29

In GRACE system one can set any values for these parameters when one checks the gauge
invariance. In the calculation of cross section, however, unitary gauge is automatically
chosen, because the total number of diagrams is less than that in general covariant
gauge. In the program, parameters with values greater than 100 are regarded to be
the unitary gauge (see section 2.4).

2.3.3 QCD

The QCD Lagrangian [2] written in terms of the unrenormalized fields and coupling is
given by

1 auyv A .
Locp = —3GoGe" +) " (i — mgo)
q
_ Aa .
—|—QO Z z/)((]q)’}/u?l/)(()q)Auo + L:gauge + Eghost, (2.102)
q

where G, is the field strength of gluon defined by

a
G[I,VO

= 0,A% — 0,A% + g0 fa,,cAzoA‘;O. (2.103)

The color matrix is denoted as \,/2, (a =1,---,8, for SU(3)) which satisfies

A] A (A M) 1 Ae
[27 2] = Zfabc?a {2, 2} = 35ab +dabc 5 . (2104)

The constants which appear in the amplitude squared are

8
'Pr(l) = Nca Z facdfbcd = C’A(Sabp

c,d=1

Ao Ay o Aa
T _ - _ 7 — T abs _ = I 2.]_
I‘<2 2) R(Sb = 9 9 CF (05)

where I stands for the unit matrix for the color index. Numerical values of these
constants for SU(3) are
4 1
N.=3, Cy=3, Cp= 3 Tr = 3" (2.106)
The last term Lgpoq in Eq.(2.102) is for the ghost particle. There are two gauges widely
used. These are the same as in QED but have the following features:

1. Covariant gauge:
Ghost particles should be introduced. These particles are needed whenever gluon
loop is formed, even in the final state of the squared amplitude. Gauge parameter
« appears in Eq.(2.50) for the covariant gauge is denoted to ag.

30 CHAPTER 2. THEORETICAL BACKGROUND

2. Axial gauge:
No unphysical ghost particle is needed.

The gauge fixing term Lyqu0e is exactly the same as in QED (see Eq.(2.43)). GRACE
allows to choose either of these gauges. See section 3.2.1.

The renormalization can be done in the same way as in QED. The rescaling factors for
unrenormalized quantities are introduced by

a 1/2 4a 1/2
AuO = ZB/ A;n ¢(()q) = Z2(§ ¢(q)7

% = Zyg (2.107)
Mg = qumq.

Quark and gluon renormalization constants are denoted as Z,, and Zs, resectively and
that for the strong coupling is Z;. Quark mass is renormalized in the multiplicative
way. We substitute these relations into Lgcp to eliminate bare quantities and after
that we separate counterterms from the rest,

1 a a — . A >\a a
‘CQCD = _ZF/U/F[U/ + Z [l/)(q) (Z@ o mQ)w(q) +g Z [l/}(q)’yl‘?[l/)(q)Au
q q

1
_gfabc(aqu)AZAlc/ - Zg2fabcfadeAZAlc/AZAle/
+0L + Lgauge + Lghost, (2.108)
= »Cfree + 5['c + *Cinta

Here Lyye. is the bilinear form of fields including gauge fixing and ghost terms. The
tensor F);, is introduced to express the linear part of gluon field,

F%, = 9,A% - 9,A°. (2.109)

The counterterm Lagrangian 6L, is given by

1
0L, = —Z5Z3F“ F?

uv pv

(@), _ @ A .
+ 326 Zog 0 (i — mg) — 3 6mgp O + 930 8259, SO A
q q q

1
_géztfabc(ayAz)AzAf/ - 2925quabcfadeAZA,c/AZAs
+{counterterm for ghost fields}. (2.110)

Constants in the counterterms are defined by

Z2q — 1+5Z2q;

2.3. SPECIFICATION OF MODELS 31

Zy = 1+0Zs,
ZyZagZy* = 14 06Zy,, (2.111)
Z,73% = 1462,
Z7Z; = 14467,
Imy = (ZogZmq — 1)my.
Renormalization constants of interaction vertices, Z¢, Z; and Z,, correspond to quark-

quark-gluon(¢qG), triple-gluon(GGG) and quadruple-gluon(GGGG) coupling,
respectively. Feynman rules are given in chapter 6. Counterterms will be found in

Ref.[2], which we do not write down here. In massless QCD as the coupling constant

g can be renormalized at an arbitrary mass scale p,

90 = Zg()g (), (2.112)

the running coupling constant g(u) is determined from the S-function defined by

ud?i(j) — Blo(w)). (2.113)

This B-function is expanded up to the second order as

g3 5

_ 9 7
B(g) = (47r)2ﬁ0 (4ﬂ)4ﬁ1 +0(g"). (2.114)

Then the lowest order running coupling constant as(Q?) = ¢g*(Q?)/4r is given by

(0) . 4
Qg (Qz) - ,80 . ln(Q2/A2?CD), (2115)

where the parameter Agcp is defined by

(0)/ 2 2
ag’ (1) AQCD
14 %s B -1 —0 2.116
with 11C ATr N
By = A R (2.117)

3)
where Np is the number of flavors. Including the next order term in 3(g), we find the
coupling constant in the next-to-leading-logarithmic approximation

! G os'(Q%)) = Boy (& (2.118)

ozgl)(Q?) i 4 Bo 4By /P + ag)(Qz) T An (F)v

32 CHAPTER 2. THEORETICAL BACKGROUND

which can be approximated by the following expansion formula

Inln(Q?/A?
g (@) = o (@%) |1~ ggm : (2.119)

where
34C% — (20C4 + 12Cr)TrNp
B = :
3
In GRACE system, contrary to the case of QED or electroweak theory, the strong running
coupling constant ag is not generated. The reason is because it cannot be uniquely
defined but depends on a momentum characteristic to the process and thus may differ
from one process to another. The user should define it in the subroutine KINEM and
include it in the variable YACOB which is multiplied to the amplitude squared. In this
way one can introduce the coupling constant of any variable, such as as(s) or ag(p%)
and so on, most suitable one to the problem.

(2.120)

2.4. METHOD OF AMPLITUDE CALCULATION 33

2.4 Method of amplitude calculation

The procedure of the numerical calculation of Feynman amplitudes is divided into the
following steps: Amplitudes are decomposed to vertex amplitudes by splitting internal
lines into wave functions of fermions and polarization vectors of vector bosons. Using
the decompositions of the internal lines we can write any Feynman amplitudes in terms
of vertex amplitudes. Then the vertex amplitudes are numerically calculated. Finally
the internal lines are reproduced numerically by summing over spin states for the
fermions and polarization states for the vector bosons, respectively.

This method enables us to construct compact programs for calculation of Feynman
amplitude in any tree Feynman diagrams for the electroweak theory. Taking into
account the color factors, we can also use this method for QCD(see section 2.4.3).
Corresponding program package CHANEL is presented in section 7.3.

2.4.1 Calculation of amplitudes

Let us consider a scattering amplitude corresponding to the Feynman graph shown in
figure 2.1 as an example.

4 N

Fig. 2.1 A Feynman graph for the process ete™ — WHTW 4.
_ J

In this graph pq, p2, ¢1 ¢ and k are momenta of e™, e, W', W~ and ~, and hy
and h, are helicities of e™ and e™, and €1(q1), €2(g2) and e3(k) are polarization vectors
of W+, W~ and v, respectively.

The scattering amplitude for this graph is given by

Ty = v(p1, h1) CZW 61n(q1) Sr(—p1+ q1) ng u(pz, ha)
XD (a2 + k) €y (a2 + k, —az, —k) e2(az) €3, (k), (2.121)

34 CHAPTER 2. THEORETICAL BACKGROUND

where cly, and cyfyy,., express electron-W and photon-W couplings, respectively, and
they are given by:

M 1-
y = e = (2.122)
2 2 2
2(M7 — M)
and
(0, ¢, 7) = e[(p — 9)79"" + (¢ —7)"9" + (r — p)’g”"]. (2.123)

The key observation used in CHANEL is that propagators can be expressed by bi-
linear form of wave functions:

Za,z’ wa,i Ua(h(Z)) p(Z)) Ua(h(Z)) p(z))
Sr(p) = po

: (2.124)
—m

and

¥ wi el (p)) (p)
DF.UV(p) = pg - m2

(2.125)

)

where w, ; and w; are c-numbers, weight factors for the decomposition of propagator,
and U? represents either spinor u or anti-spinor v depending on the value of index «a.
Momenta p® are calculated from off-shell fermion momentum p.

By substituting these expressions, we obtain

1 1

Tfi = M2 Zwaﬂ'zwl

(=1 +@1)? (@2 +k)* — M, o]

xT(pr,)y €1 (@) U (RO, (—p1 + 1))
Xﬁa(h(i)a (—p1 + lh)(i)) chw) (g2 + k) u(p2, ha)

o
Xy (a2 + &, — a2, —k) € (g2 + k) €2(q2) €3(k)o (2.126)
1 1
= Wayi w
D(—p1 + q1,0) D(qz2 + k, M) ; ’ Xl: :

<V Vit vl

where
D(p,m) = p*—m?
Ve(t?{/’i) = U(p1, h) chy e1y(q) U(AYD, (—p1 + (h)(i)), (2.127)
VR = UMD, (—p1+ @)) cliy (g2 + k) u(ps, ha),
and
Vs = (@ + ky—az, —k) €D (g2 + k) €2,(a2) €30 (K)- (2.128)

Calculation of the vertex parts Ve(&‘,? , Ve(;‘,’i) and VV(VI')VV’Y are prepared as subroutines

in the program library CHANEL. Numerical value of the amplitude is easily obtained by
them.

2.4. METHOD OF AMPLITUDE CALCULATION 35

2.4.2 Formulas for amplitude calculations

In this section, we present the basic formulas for the amplitude calculations. We
shall start to derive vertex amplitude for the fermion-fermion-vector boson (FFV)
vertex. Here we define helicity eigenstates of massless fermion (not antifermion) with
momentum p as

xa(p) = px-a(ko)/\/2(p - ko), (2.129)

where A\ = + denote helicity states for fermion and kg is a reference momentum to be
specified. The basic spinor x, (ko) is defined such that the helicity state x, (ko) satisfies
usual relation to chirality projection operator:

X+ (ko) x+ (ko) = wiko (2.130)
where w, is defined as
wy = (1+75)/2. (2.131)
Here the positive-helicity state is fixed by the relation
X+ (ko) = Fix—(ko), (2.132)
where k; is chosen in such a way as k¥ = —1 and k;-ky = 0, which guarantee that x (ko)

satisfies Eq.(2.130). Due to these conditions, the wave function defined in Eq.(2.129)
also satisfies the relation

X+(P)X£(p) = wip. (2.133)

Since the helicity state of antifermion has opposite sign to that of fermion in the same
chirality state, we define the wave function for massless fermion and that for antifermion
with helicity h as

X”(h,p) = Xon(p), (2.134)

where p = + for fermion and p = — for antifermion, respectively. Using Eqgs.(2.129) to
(2.131), we can write vertex amplitudes for massless fermions in terms of components
of momenta and polarization vector of the vector boson e,

X7 (1, 2)¢ ()T x?(h, p) = Spmr pnAon(Ri + iphRy), (2.135)
with
'=A4 w, +A_w_, (2.136)
where
Ry = {(ko-9)(e-p) — (ko- €)' p) + (ko - D) -)}/ (@ - ko) (P - ko)
and

Ry = €pupo kb 0p” [\/ (0" - ko) (p - ko). (2.137)

In Eq.(2.136), Ay denote coupling constants for left (—) and right handed (+) chirality
of vertices.

36 CHAPTER 2. THEORETICAL BACKGROUND

In actual computations, it is convenient to specify ko such that the forms of R; and
R, become compact. For instance, choosing k¢ = (1,1,0,0), we can write Eq.(2.137)

Ry = (&) 5o — (60— (€ #)E0 + (& =) -),
Ry = (exr)®/i" — (e xr)" /i — (& — &)(r x 1), (2.138)

where p° = p® — p® and 7 = p/4/p°. Here € and 7 are ¢ = (€¥,€*) and 7 = (r¥,77),
respectively.

Next we extend these expressions to the case of massive fermions. We define a wave
function of massive fermion as

UP(h,p,m) =c(p + pm)x_,n(k)/\/2(p - k), (2.139)

where an light-like vector k£ is fixed so that the U” is an eigenstate of helicity h.
Moreover the complex phase c is chosen such that U” becomes x” defined in Eq.(2.129)
at the limit where the fermion mass goes to zero. Notice that redefinition of the overall
phase of U? does not affect final results since amplitudes are squared in cross sections.
In order to satisfy above conditions we choose two light-like vectors which build up p
as

D = p1 + D2,
with (0 2l)
p +|p
P11 = T(n + 1),
and)
m
Pr= " (n—m,), 2.140
T2+ Ipl)(») (2.140)

where n = (1,0,0,0) and n, = (0,p”/|p|,p?/|p|,p*/|p|)- Under this decomposition of
the momentum p and choosing k = ps ,we can verify that U” satisfies the relation

U (h, p,m)U?(h,p,m) = (1 + hys§)(p + pm) /2, (2.141)
where | .
y 4 b

= = — T 2.142

s - n + mnp ()

Notice that s obtained in Eq.(2.142) is a helicity axis of fermion.
Furthermore, Eq.(2.139) is written by the two wave functions for massless fermions x:

U?(h, p,m) = Xpn(P1) — pc—pn(P)X—-pn(P2), (2.143)
where

(ko - mp) (k1 - m) — (ko -) (ks - mp) + i wpo kb KnPng (2.144)
ko -n) = (ko n,)2

ci(p) =

2.4. METHOD OF AMPLITUDE CALCULATION 37

and
c-(p) = —c4"(p). (2.145)
For kg = (1,1,0,0) and k; = (0,0, 1,0), the phase factor for the wave function of mas-
sive fermion in Eq.(2.144) is reduced to
p¥ +ip
()2 + ()2

e (p) = (2.146)

The general form presented in Eq.(2.143) is convenient to construct the vertex ampli-
tudes of fermion-fermion-vector boson vertex for massive fermions. Here we write a
general form of vertex amplitude as

TORe(m! m,p,p,q, A AL) = T(K,p,m")¢x\(q)TU?(h,p,m)

= J/[,}/;l],,ph’)\(m', m,p,p,q, A_;A,), (2.147)

where I' is defined in Eq.(2.136). Using Eq.(2.143), we can decompose the vertex
amplitudes for massive fermions in terms of linear combinations of those for fermion-
fermion-vector (F'FV') boson vertices for massless fermions obtained in Eq.(2.135):

TV m, ' p g, A AY) = Auxa(0')dA(@)x (1)
+A5p'pc” 5 (p') e (0) X5 (P5) A (2) X5 (P2),

JVL (! ym,p' g, A ALY) = —Adpes (p)X«(0)¢A(0)x (o) (2.148)
—Azp' (0 x+(0'2)¢r(0) x=(p1),

where momenta p and p' are decomposed by Eq.(2.140).
Vertex amplitude for fermion-fermion-scalar boson (F'F'S) vertex is also written by
a similar form;

TSP (m! m,pp, A, Ay) = U/ (W, p,m)TU(h, p,m)
= J/E‘,g,}l,mh(m',m,p’,p,A_,A+). (2.149)

We can decompose the vertex amplitudes for massive fermions in terms of linear com-
binations of F'F'S vertices for massless fermions;

JEL(m! m,pp, A LAY = Arxa(0)x=(p1)
+A4p'pc" £ (p)ex (p) X5 (P2)xx(p2), (2.150)
T (! m,p p, AL AL) = —Aqpes(p)Xa(9)) x4 (p2)
—Asp' 5 (0") X5 (0'2) xx (1)

38 CHAPTER 2. THEORETICAL BACKGROUND

The expressions of the vertex amplitude for massless fermion-scalar boson vertex are
written as

X7 (W,)TX? (h, D) = 06—y pn Aph(R1 + iphRy) (2.151)

with
'=A4 w, +A_w_, (2.152)

where

(ko - p') (k1 - p) — (ko - p) (k1 - P')
V@ ko) ko)

Lt (2.153)

\/(p’ ko) (p - ko)

Choosing ko = (1,1,0,0) and k; = (0,0,1,0), we can write Eq.(2.153) as

Y

B , ﬁO ﬁ/O
Ry = p¥=5— Py\]57
p’O p/O

R, = p* Iﬁ — pz\ i)—o, (2.154)

with p° = p® — p?.
Notice that combinations of helicity states for the F'F'S vertex are different from

those of FF'V vertex.
The vertex amplitude for three vector boson vertex is given by

VAo (@12, 33) = Guvv[((a1 — g2) - €33(43)) (ex, (@1) - €3, (02))
+((g2 — @3) - ex,(q1))(ex, (2) - €x4(g3))
+((g3 — q1) - €x,(g2))(€x5(g3) - €x,(q1))], (2.155)

where G'yyy is the coupling constant of the self-interactions.
Four point vertex of vector bosons is given by the following simple form:

V)E”,>\2,,\3,,\4 (91,92,93,94) = Gvvvv[(exn,(q1) - €x;(a3))(€x,(q2) - €x,(qa))
+(ex; (q1) - €x,(g4))(€x,(q2) - €35(g3))
—2(ex, (1) - €x,(@2)) (€35 (g5) - €xs(aa))]. (2.156)

Finally scalar and vector boson vertices are written in the following forms: For
scalar-scalar-vector boson (SSV) vertex,

T g, p1,0) = Gssvlea() - (b1 — po)] (2.157)
and for VV S and VV'SS vertices,
VA[K)ZS(S)] (q1,¢2) = GVVS(S) (ex (@) - €x,(q2))- (2.158)

2.4. METHOD OF AMPLITUDE CALCULATION 39

The coupling constants should be assigned in a consistent way in order to give
correct relative signs among amplitudes.

Using above expressions for vertices, we can numerically calculate the vertex am-
plitudes included in the amplitude of any tree graph in electroweak theories.

Next we write a numerator of internal fermion line ¢ 4+ m in terms of wave functions
of on-shell fermion fields. Here we decompose the momentum ¢ in terms of a light-like
vector l~1 and a time-like vector l~2 with the square of the four vector m2. Using the
relation of Eq.(2.141) ,we can write

d+m="> {sign(D)U* (h,11,0)T" (h,11,0) + sign(3)U??(h, lo, m)TU** (h,lo,m)},
h=-+
(2.159)

where sign(i?) denotes the sign of the time component of vector [;, and I; is defined by
I; = sign(I%)l;. (2.160)

Here p, is chosen as p, = sign(3).
Numerator of propagator for massive vector boson in covariant gauge is written as

v

q“q

Gula) = =" + (1 =) 5= 1,

(2.161)

where M and a denote the mass of vector boson and the gauge parameter, respectively.
G, (q) is also decomposed by polarization vectors as

Gu(q) = XA: exu(@)exv () (9)- (2.162)

The expressions of polarization vectors €} depend on the gauge choice. For instance,
we choose as a rectangular polarization basis,

ei(g) = qT—m(O,qqu,quz,—Q%),

Gale) = —(0,~".4%,0),

ehs(q) = %('Z—F,qz,qy,qz), (2.163)
dale) = %

with @ = {/|¢?| and ¢% = (¢°)*> + (¢¥)®. The polarization vectors with A = 1,2 cor-
respond to the transverse components and A = 3 denotes the longitudinal one. The
polarization vector with A\ = 4 should be added if massive vector bosons become virtual
states.

40 CHAPTER 2. THEORETICAL BACKGROUND

Using a rectangular polarization basis presented in Eq.(2.163), G,.(q) can be re-
produced by choosing the weight factor 7, as follows:

mo= m =+l
ns = sign(q?) (2.164)

a(M? - ¢%)

— g 2
m = sign(q)m,

where sign(q?) means +1 for ¢ > 0 and —1 for ¢*> < 0, respectively.

The unitary gauge is chosen for o > 100 with M > 0, since the unitary gauge
corresponds to a — oo, which is not appropriate for numerical calculations.

By varying the gauge parameters, we can check the gauge invariance of calculated
amplitudes when they contain vector boson propagators.

Using Eqgs.(2.159) and (2.162), we can write any Feynman amplitudes in terms of
vertex amplitudes.

According to above expressions, we can numerically calculate any Feynman ampli-
tudes for the electroweak theory in tree level. Although the program package for the
numerical calculations are presented in section 7.3, we shall briefly explain the relation
between the program package and the obtained expressions.

The program package CHANEL consists of subroutines to calculate vertex amplitudes
(FFV, FFVO, FFS, FFSO, VVV, VVVV, VVS, VVSS and SSV). CHANEL also contains the
subroutines to obtain the polarization vectors and the weight factors of the vector boson
(POLA), phase factors of the wave function of fermion (PHASEQ) and the subroutines to
decompose the momentum of fermion (SPLT and SPLTQ).

2.4.3 Color factor

The one of basic principle of the GRACE system is to calculate the amplitude rather
than its squared form. Though the color is a freedom of particles like helicity, we treat
the color in a different way. If we consider the color factor in the amplitude level,
we must sum and/or average for all color states after squaring the amplitudes in the
initial and final states as we do for helicity states. While it is interesting to calculate
the amplitude for some fixed helicity states, it is practically meaningless to do for some
fixed color states. Further, the color factor is independent of momenta. Therefore, it
is simpler to treat the color as a factor multiplied to each squared matrix element than
to handle it in amplitudes. Hence we include the color factor when we calculate the
square of the sum of amplitudes for the process in such a way:

k
3 CyMM], (2.165)

ij=1
where k is the number of amplitude, M; is the i-th amplitude in which the color

factors are removed (we do not use 7' as amplitude here), and C;; is the color fac-
tor for the matrix element MZMJJr . In this subsection we present the algorithm to

2.4. METHOD OF AMPLITUDE CALCULATION 41

calculate C;;. We consider the group SU(N,) for the color degree of freedom and ex-
plicit implementation is done for N, = 3. The fundamental representation is given by
T® (= Ag/2 in section 2.3.3) and it satisfies

[T%,T°] = i fane T, (2.166)

where fup. is the structure constants of SU(N,.). The following relations hold(see
section 2.3.3. T, = A,/2):

N2 -1
T°T* = Cp-I="¢ i
F 2Nc ’
1
Tr(T*T®) = Tgré™ = 55“”, (2.167)

fabcfdbc = CA(Sad :thsad’

(repeated indices are summed).

The color charge is carried only by quarks, gluons and ghost particles for gluons. We
follow the notation and convention of Ref.[2]. In the calculation of color factor, particles
without color charge are neglected. Denoting the QCD coupling constant as g, we have
three types of vertices:

(1) quark-gluon vertex ¢T*
(2) three-gluon vertex —igfape
(3) four-gluon vertex —g%(fapefedet Cyclic permutation).

Here we only show the color factor (see Eq.(2.109)) and the ghost-gluon vertex is
the same as the three-gluon vertex as far as the color factor is concerned.

First we replace the four-gluon vertex by the sum of three diagrams (of s, ¢, u-types
) with three three-gluon vertices:

(2.168)

(_Zg)fabm(_z.g)fcdy (_Zg)fdam(_z.g)fbcy (_Zg)fcam(_z.g)fdby

Here the dashed line represents a gluon color propagator, d,,, which has neither Lorentz
structure nor momentum dependence.
In the second step, we replace the three-gluon vertex by the sum of two quark loops:

42 CHAPTER 2. THEORETICAL BACKGROUND

gTr(ToT*T*) gTr(TT*T*)

Here, the identity
— ig fape = —gTx[T%, T*|T* (2.169)

is used.
After the last step, the diagram becomes QED type. We apply the Fierz transfor-
mation for color,

(T)ij(T*)a = —(1/2Ne)ds50m + (1/2)0adji (2.170)

on each gluon propagator to express it as two pairs of quark lines.

Finally we are left with graphs which consists of only quarks. In summary, the color
factor of a diagram for a matrix element with n4 four-gluon vertices, ns three-gluon
vertices, and n, gluon propagator is equivalent to 3"42"2"st" graphs which consist
of only quark lines. The color factor of each graph is 3" - C' where n is the number of
quark loops and C' is the product of factors at each decomposition given in Egs.(2.168),
(2.169), and (2.170).

Further, we need average for color states if some of colored particles belong to the
initial state. For a quark in the initial state, we divide by N, and for a gluon by N2 —1.

2.5. FEYNMAN GRAPH GENERATION 43

2.5 Feynman graph generation
Graph generation subsystem is designed by the following guiding principles:

1) The current version of GRACE system supports amplitude calculation only for the
tree level. Since, however, it will be extended to inclusion of one-loop corrections
in near future, the current graph generation subsystem is desirable to be able to
generate one-loop as well as tree graphs.

2) In the numerical calculation of differential cross section, momenta and spins of
external particles are fixed to specific values. Thus even if they are identical par-
ticles, they are considered to be distinguishable. This means that those graphs,
which are equivalent each other under the exchange of identical external particles,
should be enumerated as different graphs; they are considered to be topologically
different objects. Under this condition, more graphs are generated than the case
where the identical particles are not distinguished. The generated source code
for numerical calculation is longer than the latter case, but it will be much easier
to deal with.

3) Tadpole diagrams are not generated by the current version. Since whether tad-
poles is needed or not depends on the prescription of renormalization, it may be
required to consider in the future development of automatic system for one-loop
calculations.

4) Vacuum-to-vacuum graphs are not considered. We consider only those graphs
which have at least two external particles and one vertex.

In this section, we first define some technical terms and discuss some properties of
graphs from the graph theoretical point of view. Then the method of graph generation
is described.

2.5.1 Notations

Several technical terms have been used in graph theory Ref. [7] but some of them have
different meaning between physicists and graph theorists. For these terms we follow
physicist’s terminology.

In order to help for understanding the terminology, we take a simple graph as shown
in figure 2.2, where the points 1, 2, ... 8 are “nodes”. The “node” is either external
particle or vertex.

The connected pair of two nodes, e.g. (1,3), (4,5), etc., is called an “edge”. An edge
represents either a propagator between two vertices or a line connecting between an
external particle and a vertex. Two nodes, connected by an edge, are called “adjacent
nodes” of the edge, e.g. nodes 1 and 3 are adjacent nodes of edge (1,3). If some distinct
edges have a common end node, they are “adjacent edges” of the node, e.g. edges (1,3),
(3,6) and (3,4) are adjacent edges of node 3.

44 CHAPTER 2. THEORETICAL BACKGROUND

4 N

Fig. 2.2 Examples of tree graphs
- J

The “degree” of a node is the number of adjacent edges to the node, e.g. degree of
node 3 is three. The degree of an external particle is one, e.g. that of node 2 is one.
We also use the word “the number of legs” as the same meaning as the degree.

When two nodes are connected through a series of edges, this object is called a
“path”, e.g. (1,3,4,5,8) is a path connecting nodes 1 and 8. The “length of a path”
is the number of edges on the path. The “distance” between two nodes is the length
of the shortest path joining them. If there is no such a path, distance is said to be
infinite.

A graph is “connected” if every pair of edges are connected by a path. If a graph
is not connected, it is decomposed to several “connected components”.

The following relation is easily proved for a graph:

Theorem 1 If a graph has N nodes, I edges, L loops and C connected components,
then

N-I+L = C. (2.171)

Proof

Let us first consider a connected graph with no loop (L = 0,C = 1). The identity is
proved by mathematical induction on the number of nodes N.

When there are two nodes and one edge, the identity holds.

Assuming the identity holds for IV node, the number of edge is I = N — 1. Then we
consider the case of N + 1 nodes.

If the (N + 1)-th node is an external particle, then it should be connected to one of
vertices (not the other external particles). This results in increase of number of edges
I by one. The identity holds for this case.

If the (N + 1)-th node is a vertex, it should sit on one of existing edge. This vertex
divides one edge into two edges. Again the identity holds for this case.

2.5. FEYNMAN GRAPH GENERATION 45

Since these two cases cover all possibilities, the identity holds for NV 4 1 nodes case.
Next we prove it by mathematical induction on the number of edges I with fixed
number of nodes. Adding an edge to a connected graph, this results in increase of
number of loops L by one. Then the identity is also proved in this case.
Since the identity holds for all connected components C' = 1, the identity for a
disconnected graph, composed of several connected components, is proved by summing
the identity for each connected component.

Let us consider a graph with E external particles and V vertices, then the number
of nodes is given by

N = E+V. (2.172)

The total number of legs is always equal to twice number of edges. Because each edge
connects between two nodes and uses one leg of each connected node. Since an external
particle has only one leg, then among the numbers of legs deg(v) of vertex v, external
particles F, and edges I the following equation holds:

2] = > deg(v)+E. (2.173)

From Egs. (2.171), (2.172) and (2.173), the following equation is easily proved.

E+2L -2 =) (deg(v) —2). (2.174)

v

We cite the following theorem on a “tree” graph without proof, which is a connected
graph with no loop.

Theorem 2 The following statements are equivalent for a graph G :
(1) G is a tree graph.
(2) Every two nodes of G are joined by a unique path.

The “root” of a tree is a node distinguished from the other nodes. Any external
particle can be selected arbitrarily as the root. The graph (a) in figure 2.2 is topo-
logically equivalent to the graph (b), where node 1 is selected as the root. From this
theorem, there is an unique path from the root r to any node v. The distance between
r and v is determined by the length of the path. This distance is called as the “depth”
of the node v, which is expressed by dep(v), e.g. dep(node8) = 4. The “father” of node
v is the node which is adjacent to v and at the depth dep(v) — 1, e.g. father of node
8 is node 5. The root has no father. When a node w is the father of a node v, v is a
“son” of w. A “leaf’ is a node with no son, e.g. nodes 2.6.7 and 8 are leaves.

A “blob” is a one-particle-irreducible (1PI) part including loops. Decomposing a
graph into blobs, we can regard it as a tree graph after replacing blobs by vertices. We
call such a tree graph “skelton graph”. In our method the skelton graphs are generated
at first, and then the inside structure of each blob is constructed.

46 CHAPTER 2. THEORETICAL BACKGROUND

2.5.2 Algorithm to generate graphs
The method of Feynman graph generation consists of the following steps:

1) Generation of nodes.

)
2) Connection of nodes to construct skeleton graphs.
)

3) Generation of loop structure.

4) Particle assignment.

We describe our method in this order in the following.

Generation of nodes

We consider skeleton graph and ignore the inside structures of blobs.
In the usual field theory, three and four point vertices satisfies the following relation
between the number of legs deg(v) for tree vertex v and the order of coupling constant

O(v):
deg(v) = O(v)+ 2. (2.175)
Eliminating deg(v) in Eq.(2.174), we obtain
E—-2 = > O(v)—2L. (2.176)

When this graph is regarded as the inside structure of blob vertex w, E and Y, O(v)
should read as the number of legs deg(w) and the order of coupling constant O(w) of
the blob vertex, respectively. Hence we obtain a generalized relation both for the tree
and blob vertices w:

deg(w) = O(w)—2L(w) + 2, (2.177)

where L(w) is the number of loops defined inside of the vertex w.

Now let us consider skeleton graphs. Since skeleton graph is defined as a tree graph,
in which loops are confined in the blob vertices, we obtain basic relations necessary to
generate vertices:

L = Y L(v), (2.178)

E—-2 = > (deg(v) —2), (2.179)

O(v) = deg(v) — 2+ 2L(v), (2.180)
where L is the total number of loops confined in blobs.

The algorithm to generate vertices for a given number of external particles £ and
a total order of coupling constants O is the following:

2.5. FEYNMAN GRAPH GENERATION 47

Algorithm 1 Generation of nodes.

1. Determine the number of loops in the final graph by the equation

O—-FE+2
5 .

L = (2.181)

2. If L = 0 then skip to step 3. Otheruise express L as a sum of positive integers,

te. L =371l > 11 > 1 where n varies from 1 to L. Since there are many
possibilities of this partitioning, the following steps are repeated for all possible
partitions. The number l,, is considered as the number of loops L(w) in blob w.
The number of blobs is equal to n.

. Determine deg(v) for each vertex by dividing the number E — 2 into all vertices

according to Eq. (2.179). We first determine the value of deg(w) for each blob
(L(w) # 0), then the number E — 2 — Y, .uiops(deg(w) — 2) is allotted to tree
vertices vs, whose values of deg(v) are limited to either 8 or 4.

. The order of coupling constants of each vertex is determined from deg(v) and

L(v) by Eq.(2.180).

There are many sets of vertices which are generated by this algorithm. The program

enumerates all possibilities.

Generation of skeleton graphs

The generated nodes are connected to construct skelton graph by the following algo-
rithm. We take an external particle as the root of the graph.

Algorithm 2 Connection between nodes.

1.

2.

Vertices are classified by the numbers of legs and loops.

Repeat the following steps from 2-1 to 2-3 until all external particles are connected
to vertices.

2-1. The vertices in each class are numbered.

2-2. Connect an external particle to a vertex. Since those configurations, where
an external particle is connected to different vertices in the same class, are
mutually indistinguishable, the vertexr with the smallest number is selected
not to produce the duplicated graphs.

2-3. The connected vertex is removed from the class and is regarded as a new
class which has only this vertex as an element.

Repeat the following steps from 3-1 to 3-5.

48 CHAPTER 2. THEORETICAL BACKGROUND

3-1. The remaining vertices in each class are numbered.

3-2. Find a vertex v with just only one free leg, which is not yet connected to
another vertez.

3-3. If there is no such a vertex then go to 4.

3-4. Connect v to another vertex. The partner of the connection is selected from
each class in the same manner as step 2-2.

3-5. The classes of vertices are updated in the same way as step 2-3.

4. If the graph is a tree graph, it is accepted as a new graph. Otherwise this config-
uration is discarded.

Vertices are classified throughout this algorithm, in such a way that topologically
equivalent vertices belong to the same class. Since all vertices are isolated at the
beginning, classification at step 1 is a simple one.

All external particles are connected to vertices in step 2. Since vertices in a class are
not distinguishable, those configurations are not topologically equivalent each other,
which are constructed by connecting an external particle with different vertices of a
class. So we select only one vertex from each class of vertices. To make the selec-
tion systematic, vertices are numbered at step 2-1 and the vertex with the smallest
number in its class is selected. There are still a number of ways of selecting a vertex
corresponding to the number of classes. They are enumerated recursively.

The connected vertex becomes distinguishable, as it is adjacent to a distinguished
external particle. It creates a new class being removed from the old class. Repeating
steps from 2-1 to 2-3, some external particles may be connected to the same vertex.

At the beginning of the step 3, let us assume that the obtained configuration C
is possible to be a tree graph G by continuing the connecting process. In the graph
G, a vertex v with the largest depth from the root is connected to at least deg(v) — 1
external particles, since its all sons are external particles. If the father of v is an external
particle, the tree graph G has only one vertex v and the configuration C' is the same
graph as the final form of the graph G. Otherwise, the vertex v in the configuration C
has only one free leg. Such a vertex is searched at step 3-2. Let us consider a subgraph
composed of this vertex and its adjacent external particles. When such a subgraph is
regarded as single node, it can be considered as a kind of an external particle, since it is
distinguished from other node and has only one free leg. So the same way of connecting
process as step 2 is applied. In this process there appears no equivalent configuration.

This process terminates either when a tree graph is obtained or a configuration is
generated without possibility to be a tree graph. They are checked in step 4.

Generation of loop structure

This step constructs the loop structure inside of blob vertex. A blob vertex b has several
legs, which are connected to other nodes n1, ns, ..., nj in the preceding subsection. They
are distinguished from each other.

2.5. FEYNMAN GRAPH GENERATION 49

Since we consider only one-loop graphs, the loop structure is limited to a circle with
several legs on it. What we must do is to put necessary number of tree vertices on the
circle and connect their legs to the adjacent nodes of the blob.

A circle is invariant under rotation and reflection. We put tree vertices vy, v, ...Up,
along the circle. Each of them is either 3- or 4-point vertices. When all of them
are the same type, these symmetries survive. However different types of vertices are
mixed, the symmetries are broken. We break these symmetries so as to avoid to
generate topologically equivalent graphs. Rotational symmetry of the circle is broken
by connecting an adjacent node n; and a vertex v; on the blob. After this, we put
other tree vertices vy, ..., v;, on the circle in all possible ways.

Next we permutate adjacent nodes nq,ns,...,ng in all possible ways with fixing
ni, and connect them to vy, ..., v, in this order. If v; is 4-point vertex and n,,n,
are connected to v;, we avoid permutations which exchange n, and n,. If the circle
structure is invariant under reflection symmetry, we avoid to generate permutations
which are obtained by exchanging v; and v,, ;2 for all 3.

When there are only two vertices on the circle, reflection symmetry cannot be
broken. It can be a source of duplicated graph generation in the particle assignment
process mentioned later. However, it is simple and straightforward to solve the problem.

Particle assignment

This step is straightforward. Particles are assigned to propagators in the consistent
way to the given Feynman rules and external particles. There are several combination
of particles assignable to the propagators. In order to make the algorithm effective,
we keep a list of candidates of particles for each edge. This kind of list contains only
possible combinations, which is checked whether consistent adjacent vertices can be
constructed or not. The program searches for an edge with minimum length in its list,
and assigns particle to the edge.

Here we obtain the resultant Feynman graphs. All the possibilities is enumerated
by back tracking method and by recursive calling of sub-programs.

50 CHAPTER 2. THEORETICAL BACKGROUND

2.6 Kinematics

As noted in the Introduction (section 1.2.3), kinematics is not generated by GRACE but
is left to the user. The reason is as follows; due to the lack of generality of the algorithm
(see section 2.7.4) used in the current Monte Carlo integration package, the choice of
integration variables to get a reliable result is generally highly dependent on the struc-
ture of singularities in the amplitude. These are mass-singularity, infrared divergence,
t-channel photon exchange and resonance formation which decays into lighter particles.
At present, it is quite difficult to prepare the most general kinematics suitable enough
for any process, which contains one or some of above singularities. Therefore the user
has to write the kinematics so as to change the singular integrand into more smooth
one. For the details of the integration algorithm by BASES, we refer to the next section
2.7.

GRACE generates templates of all the subroutines necessary for phase space integra-
tion by BASES. These are

1) USERIN initializes BASES.
2) KINIT initializes the kinematics.

3) KINEM calculates four-momenta of final particles from integration variables.

Among these the user is requested to complete USERIN and KINIT by giving some
parameters and KINEM by writing kinematics. Others are generated in a complete form
(see section 3.3, 3.5 and 4.1) and can be used without any modification unless the
user wants to change the default values of parameters included.

BASES is an adaptive Monte Carlo integration package for multi-dimensional vari-
ables (see section 2.7 for the detail). The maximally allowed dimension of integration
is 50, but only up to 15 variables are allowed for singular variables. The idea for this
asymmetric treatment of variables is as follows. In actual problems it would be suf-
ficient if one can make integration up to 6-body primary process, which corresponds
to 13 integration variables(assuming the symmetry around the beam axis). After
the production of primary particles, such as heavy bosons, one wants to decay these
particles. Then one needs other integral variables, which are not singular, to describe
these decay processes. Hence 50 variables are grouped into singular and non-singular
variables and the user should assign each variable to either of these two categories.

The total dimension of integration, of course, depends on the process considered.
It is defined by the FORTRAN variable NDIM in the subroutine USERIN. Declaration of
singular and non-singular variables, the upper and lower bounds for each integration
variables should be defined in the same subroutine. BASES calls USERIN at the beginning
of the integration, and the latter calls KINIT. In this subroutine constant parameters
for kinematical variables, such as energy of the system, conditions of experimental cuts
and so on, are prepared. The main part of the kinematics should be written in the
subroutine KINEM.

2.6. KINEMATICS 51

Let us consider a process,
P1tP2— @1+ T+ gn. (2.182)

The cross section is given by (see section 2.1)

1 d3g;
7 fux / H 2qo 2y 2TV 0P e —aue e —aw)IT! (2.183)

We can say that the kinematics is a set of transformations of variables: In the sub-
routine KINEM all the four-momenta and Lorentz invariants should be expressed by the
array of integral variables X(random numbers) fed by BASES. In the generated pro-
gram the energy of a particle is assigned to the 4-th component of the array P which
expresses the four-momentum. First three components are spacial momentum. The
invariants are assigned to an array PP. Random numbers of dimension NDIM generated
by BASES are changed into components of momenta or invariants composed of them
for the final state:

X=P or PP (2.184)

Thus the cross section is rewritten as the integral over X
o = /Hd.ﬁEjF(éL’l, cee ,INDIpl[), (2185)
J

and the integrand is constructed from necessary and sufficient number of transforma-
tions of the forms

¢ = fi(z1, -, TapIN)S (2.186)
q-q; = gz’j(xly"'axNDIM)a

taking into account the constraint by the original §-function. (Needless to say, the
left-hand sides of these equations can be determined in a successive way; they do not
need to be explicitly expressed in terms of only z’s at the same time.)

The most severe singularity of the amplitude comes out when massless particles
appears. Hence photon or gluon are responsible for this in the actual case. In the
following we give several typical examples to show how to relate X to kinematical
variables to smear out singularities by taking ete ™ reactions.

Infrared divergence

Suppose we have an integral over a real photon(or gluon) energy k,

T
1:4 1), (2.187)

min

52 CHAPTER 2. THEORETICAL BACKGROUND

where f(k) is any function regular at & = 0, but f(0) # 0. This form of integral
appears in the phase space integral as

d3k dk
7T2...N/7 BT ---, 2.188
s |7 E e 2188
because k?|T|* is finite as k¥ — 0 when a photon(gluon) is emitted. By making the
change of variable

kmam ?
k = kmin () , (2.189)
kmin
we find that the original integral becomes
1
I= 1nzm [daf (k). (2.190)
min 0

The singular behavior around k ~ 0 is absorbed into the definition of new variable x.
Thus this variable can be assigned to one of X.

Mass singularity

As a typical example of this kind of singularity, let us consider a real photon emission
from ete colliding beams as shown in figure 2.3. The singularity appears from the
propagator of electron(positron) after emitting the photon. This has the form

1
(b-— K —m?
where p_ is the momentum of e~ and k is that of photon. The electron mass is denoted
as m. The denominator can be modified as

m
p_—k2—m2:—2p_-k:—2kp<
() p(E +p)

4 N

(2.191)

: +(1— cos@)) . (2.192)

Fig. 2.3 Initial radiation diagrams.

2.6. KINEMATICS 53

Here p_ = (E,0,0,p) and cosf is the angle between photon and electron. As cosf — 1
the denominator becomes very small because of m?/[p(E + p)]. In the same way the
denominator of the positron propagator can be written as

m2
p(E +p)
with p, = (E,0,0,—p). Now we consider the integral of the product of these propaga-
tors over photon angle 6.

(py —k)>—m?=—2p, -k=—2kp (+(1+ c059)> , (2.193)

ot cos f(cosB)
1= et
1

(2.194)

! f(z)
= _— dz .
4(kp)? /—1 [m?/(p(E +p)) + (1 = 2)[[m?/(p(E + p)) + (1 + 2)]
The integrand contains two very sharp peaks at cos# = +1. A change of variable which
can absorb these singularities is given by

-1
zzcos@za-g—, (2.195)
§+1
where
m2
a = 1+ ———,
p(E +p)
£ = o, (2.196)
2p(E +
. p(m2 p)
The integral I is expressed by new variable = as
1 1 1
= fip a™ A dz f(cos8(z)). (2.197)

In this way one can deal with both of mass singularities emerging from the initial
electron and positron beams at once. Note that a single variable x is enough to manage
two singularities, thanks to the fact that initial e* beams are coming in the opposite
direction. The singular terms appear in the square of amplitude like
2
TR~ ™ and 1
(p- - k) p--k
(Of course there are similar terms with p,.) The singularity of the first form is
stronger than the second, but the mass squared m? in the numerator, suppresses the
contribution, and the transformation given above is enough to handle with it.
Throughout this manual we take the process ete™ — WTW ™+ as the example to
explain the details of the functions of various parts of the program. In section 3.3 we
show the list of the kinematics for this process. We recommend the user to look this
list to understand how the infrared and mass singularities are treated in the actual
calculation.

(2.198)

54 CHAPTER 2. THEORETICAL BACKGROUND

t-channel singularity

Consider two peripheral diagrams of two photon process in QED(figure 2.4.). De-
noting the squared photon momentum as ¢ (there is of course another ¢'; but things
go in the same way), one has the original integral

tmaw dt
I= / Cr).
tmin t
It is enough to change the variable according to

1
e [daf(1(a),

I=1In

when f(t) is explicitly written in terms of

m?2 1—cosf siné

t ot

1, (2.199)
where 6 is the angle of the scattered particle from the incident one after emitting the
virtual photon. All of these terms are not so much singular. When one wants to include
7% exchange as well as photon, however, the integration by z gives bad convergence.
This is because the peak due to photon exchange is so singular, the Z° propagator
cannot be well estimated. In this case one has to transform the variable taking both
propagators into account. This implies that one has to transform

const.
t(t — M%)

into one integral variable, instead of transforming only 1/%.

4 N

Fig. 2.4 Peripheral two photon diagrams.

2.6. KINEMATICS 55

Warning of numerical instability caused by ¢-channel photon

We have to warn the user that in some cases the generated amplitude containing virtual
t-channel photon may be numerically not accurate. This happens when the mass of
the system created by virtual photon and the other light particle can be very small as
shown in figure 2.4. Examples are

efe” — ete ff, (2.200)

efe” — efe 1, (2.201)
with f being a particle lighter than several GeV at /s ~ 1000 GeV. In table 2.1 we
show test runs for several mass cases of f = u~ at /s = 1000 GeV. The origin of this
instability is the strong cancellation which occurs among amplitudes. To avoid this
cancellation we have to use the current conservation at the photon vertex, but in the
present version of GRACE this kind of protection against cancellation is not yet made.
We have checked for the case f = p~ that we can get correct answer in the quadruple
precision as shown in the table. The column indicated by REDUCE shows the results
of completely independent calculation in double precision with careful treatment of

cancellation.

mys(GeV) double precision quadruple precision REDUCE
0.10566 | 6.6538 + 0.5541 x10° | 4.2900 + 0.0236 x10° | 4.2661 + 0.0180 x10°
1.0 | 2.9527 + 0.0350 x10% | 3.4108 & 0.0094 x10% | 3.3926 + 0.0153 x10°
5.0 | 8.7012 + 0.0185 x10! | 9.0786 + 0.0227 x10' | 9.0356 + 0.0278 x10!
10.0 | 1.7372 + 0.0034 x10" | 1.7657 + 0.0042 x10' | 1.7632 + 0.0054 x10!

Table 2.1 Cross sections(pb) for the diagrams of Fig.2.4 calculated in different precisions.

Resonance formation

When a particle is produced as a resonance, which decays into other particles, the
amplitude contains the propagator
1 B ¢ — M? —iT'M
¢ — M2+ M o (q2—M2)2+F2M2’

(2.202)

where M and I' are mass and decay width of the particle, respectively and ¢ is its
momentum. If this resonance is sharp, one should take ¢* as one of integral variable,
and further make the following transformation:

Tmae f(q? bl
I= /qz] dq2 ((]2 _ M2()q2 1_ T2 M2 - FM/O dz f(qz(x)),

min

56 CHAPTER 2. THEORETICAL BACKGROUND

where
2 M2
a = tan! q"”"riM, (2.203)
2 _ M2
b = tan~! q"‘“’fiM —a, (2.204)

¢ = M?+TMtan(a+ bx).

In GRACE, decay widths of heavy particles are automatically included in some of
their propagators. The finite width always violates the gauge invariance of amplitude.
Nevertheless we modify the propagators according to the rules

1. s-channel propagators contain non-zero finite width.
2. t-channel propagators do not contain width.

Here we distinguish s- and t¢-channel resonance whether the particle is produced and
decays directly into lighter particles or not. This different treatment is coming from the
observations(which were found empirically rather than theoretically at the moment):

1. Without decay width in s-channel, the cross section diverges at the pole.

2. Finite width in ¢-channel propagator makes the cross section violently divergent
at sufficiently high energies.

The first is an obvious fact but the second catastrophe is unexpectedly large. Thus the
width is introduced only in the s-channel propagators. One must keep in mind that
the gauge invariance is violated by the inclusion of finite width. This is particularly
important to remind when one makes the gauge invariance check of the generated
amplitude. The violation in this check is usually in comparable order of O(I'/4/s).

These are typical examples of how to make singularities harmless by changing the
integral variables. We have to make some comments further.

Comments

It is not always possible to assign one integral variable to one singularity. In other
words, if the number of singularities exceeds that of independent variables, one has
necessarily diagonal singularity. Two photon process including all possible diagrams,
ete” — ete puTu (or ete), or radiative Bhabha scattering, ete™ — ete vy, are well
known examples. If this happens, one possible way to get rid of the difficulty is to divide
the whole phase space into two or more regions, and use different set of transformations
of independent variables in each sub-phase space. An example of such kinematics will
be found in Ref.[8] for the radiative Bhabha scattering. Another may be to discard
the part of phase space in which singularities show up and dominate the cross section.
This may be not satisfactory, but in massless QCD we have no other way than this.

2.6. KINEMATICS 57

With keeping the above arguments in mind, one should try to write the most appro-
priate kinematics for the process to be considered. It is necessary to analyze carefully
the structure of singularities and to find the way to avoid diagonal singularities. It
might happen that one user succeeded to get good integration for a process, but the
other one failed because of an inappropriate kinematics used. One can find the full
listing of the kinematics for the radiative process ee™ — W*W v in section 3.3. This
may be helpful to learn how to write kinematics.

Inclusion of structure function

In some cases one has to convolute a function with the cross section of sub-process.
Typical example is inclusion of structure function of nucleon, radiator function for
initial state radiation from e*e™ beams or luminosity function for equivalent photon
approximation. All of these cases can be written symbolically as

o(s) = /da:F(a:,s)UO(:c,s), (2.205)

where oy is the cross section of sub-process and F(z,s) represents the function to be
convoluted. Since the former is generally given by a multi-dimensional integral over
the phase space, x1, - -, Typn, Wwe can extend the space to include z and make NDIM+1
dimensional integration by BASES at once.

58 CHAPTER 2. THEORETICAL BACKGROUND

2.7 Numerical integration

2.7.1 Integration algorithm

The integration program package BASES uses the importance sampling method. To
illustrate this method simply, we consider the following one-dimensional integral;

I= /Olf(a:)da:. (2.206)

By modifying this as
iG]
o p(z)

the integral can be interpreted as the expectation value of the function f(z)/p(x) with
the probability density function p(z). The estimate of integral is given by

I= Ep[@]

pQ)’ zlp

where (is a random number with the probability density function p((). The variance
of the estimate is

p(z)dz and /01 p(z)dz =1, (2.207)

(2.208)

1 Nf(Cj)2 Nl U f(z)? 2
var.(Yl NS o = N[/o ooy e T (2209
If the probability density function were given by
1
pla) = @)l/ [1(y)lay, (2:210)

the variance could be minimized (zero for a positive definite f(z)). Since, however,
it is impossible to find such a probability density function, the function p(z) is taken
in practice to satisfy |f(z)|/p(xz) ~ constant. In other words, the probability density
function p(x) is chosen to be large (many sample points are thrown) where |f(z)| is
large.

We consider a grid, composed of N, intervals with variable widths (small-regions),
over the integration region [0, 1 | and sample a small-region with an equal probability
1/Ny. An equation

]\1[9 — p(z:)Az; (2.211)
holds, where Az; and p(z;) are width of the i-th small-region and the probability
density function at a point x; in it, respectively. Therefore the probability density

function is given by

1
NQA.’Bi

p(z;) = and Zp Az = 1. (2.212)

2.7. NUMERICAL INTEGRATION 59

In BASES, the probability density function is adjusted so as to satisfy the condition

{M}2 = {f(z)AzN,}* ~ constant. (2.213)
p(z)

In the multi-dimensional case these small-regions construct a hypercube, e.g. a
rectangle in the two dimensional case and a rectangular solid in three dimensions.
Since the number of small-regions per variable NN, is set to be around 50 in BASES,
there are N;Vdim hypercubes, where Ny, is the number of dimensions. This is a very
large number. Our event generation program SPRING needs a probability information
for all hypercubes, according to which a hypercube is sampled. It requires a huge
storage space and moreover calculation of the probabilities for all hypercubes needs a
lot of computing time. This is the reason why we consider a medium size of regions
(sub-regions), by which we construct the hypercubes for the event generation. Number
of sub-regions N, is determined so that the number of hypercubes NN¢im should not
exceed a given memory size and N, could divide NNVy. In the 10 dimensional case, as an
example, there are 2 sub-regions and 50 small-regions for each variable, and N e =
219 (= 1024) hypercubes in total.

As shown in figure 2.5, execution of the program BASES consists of the grid op-
timization step and integration step. In the former step, the grids are adjusted as
follows;

(1) At the first iteration, all grids have an uniform interval.

(2) The integral is estimated by sampling a set of points for an iteration according to
the algorithm mentioned above. During each iteration of estimation, a histogram

of {f(z)/p(z)}? is made.

(3) After each iteration, new intervals of the grid are determined so that each interval
should have an equal area S/N,, where S is total area of the histogram.

(4) These procedures (2) and (3) are repeated until the accuracy of the estimate
reaches a given value or becomes stable, or number of iterations exceeds a given
number.

In the latter step, probabilities for all hypercubes are calculated as well as estimate
of integral with the fixed grids, optimized in the former step. This step consists of many
iterations of estimating integral and is terminated when the accuracy of the estimate
is less than the required one or number of iterations becomes equal to a given number.

In SPRING, a hypercube is sampled according to its probability, prepared by BASES,
and a point in the hypercube is sampled and tested. If the grid is enough optimized,
even such a simple method can give a good efficiency of event generation.

Before using BASES/SPRING, main program MAINBS and two subprograms USERIN
FUNC are to be prepared. In the function program FUNC, a numerical value of the inte-
grand is calculated at the sample point generated by BASES. For numerical calculation

60

CHAPTER 2. THEORETICAL BACKGROUND

of a function, some input parameters, like beam energy, masses of particles etc., are
necessary. They are given in USERIN, which is called only once at the beginning of the
job. Number of integration variables and their lower and upper limits are also given in

this subprogram.

-

Fig. 2.5 Program flow of BASES

~

2.7. NUMERICAL INTEGRATION 61

2.7.2 Wild variable and BASES50

Recently very high energy e"e™ colliders, JLC(KEK), NLC(SLAC), CLIC(CERN) and
VLEPP(CIS), are studied as future plans. At the energy scale of these machines, the
number of final state particles in some elementary processes is too many to apply the
original BASES/SPRING directly, because it allows a limited number of dimensions (
at maximum 10). Extension of the number of dimensions is easy for the integration
(BASES), but is not so easy for the event generation (SPRING).

If we consider the 25 dimensional case, as an example, it is easy to see that a
straightforward extension of the dimension number in BASES/SPRING is very difficult.
Even though we have two sub-regions for each variable axis, there are Neype = IV, sNdim:
225 hypercubes. Calculation of such a huge number N, of probabilities requires much
computing time and their storage is also too large. It seems to be unrealistic.

In order to overcome this situation, a concept of the wild variables is introduced.
Considering a singular function with many variables, number of those variables, which
give the function some singular behaviors, is, in almost all cases, limited. We call
this kind of variables the wild variables. If we divide a subspace, spanned by these
wild variables, into hypercubes, number of such hypercubes becomes not too large.
Thus we apply the BASES algorithm only to this subspace of the wild variables and
treat the other variables as additional integration variables. This is a basic idea of the
BASES50/SPRING50 algorithm.

In order to show the difference between the algorithms of BASES and BASES50, we
consider the following two dimensional integral;

_ _ [t f=)
1= [fzy)dady = | ol @) dedy, (2.214)
where))
/Op(ac)dle and /Oq(y)dyzl. (2.215)

By the BASES algorithm, the estimate of this integral is given by

Neube 1 Nirial f (xj yj)
. Sny) (2.216)
jz:l Ntrial ; p(wz)(I(yf)

where (zJ, 4!) indicate the i-th sample point in the j-th hypercube, p(z?) and q(y?)
are the probability densities for the importance sampling and Ny,.;q; is the number of
sampling points per hypercube.

On the other hand, if we take the BASES50 algorithm and consider a variable z as
the wild variable, the estimate is given by

Neupe 1 Nirial f(xk y)
I~y 3 Sl 2.217
1:2:21 Nuiar = p(«F)q(y:) ()

where y; is sampled in the full range of the variable y, while z¥ is sampled in the k-th
subregion.

62 CHAPTER 2. THEORETICAL BACKGROUND

As shown illustratively in figure 2.6 numbers of hypercubes are N2 and N, for the
former case (a) and the latter case (b), respectively, where N, is number of sub-regions
per variable.

4 N

Fig. 2.6 (a) Hypercubes by BASES algorithm and (b) those in BASES50
algorithm, where the variable z is assumed to be wild one.

- J

Although the latter has less number of sampling points for each iteration than the
former, it does not affect seriously to the estimate of integral by taking more iterations.
Suppose that Ny, and Ny are numbers of integration variables and wild variables
(Nwita < Ngim), respectively, the number of hypercubes N for each case is given
by
Newe = NNam (BASES)
= NDNwia (BASES50).

In BASES50, the maximum numbers of integration variables and wild ones are equal
to 50 and 15, respectively. It is noticed that as concerns the numerical integration we
can obtain the estimate of integral even though the number of those variables, which
make the integrand singular, is more than the mazimum number of wild variables 15,
but for the event generation efficiency may be low.

Since BASES50/SPRING50 is the newest version and is recommended to use, we call
BASES50 (SPRING50) simply as BASES (SPRING) throughout this manual.

2.7.3 BASES on a parallel computer

According as increasing the beam energy achieved by accelerators, increases the number
of final state particles in the elementary processes to be considered in the experiments.
Since it makes generally an expression of the differential cross section very long, the
numerical integration requires much computing time. The reason is that the integrand
has a huge number of arithmetic operations and is calculated at many sampling points
in the phase space.

2.7. NUMERICAL INTEGRATION 63

There are two possibilities to make execution time short. One is to use a paral-
lel computer, which consists of many processors with close coupling among them.
Distributing the sampling points to Np.qe processors uniformly, the overall execution
time can be shorten by a factor N,.q. except for some fraction of an overhead. Since
an efficient distribution of sampling points gives an uniform load on each processor,
finding a good distribution way is very important for getting a good performance on a
parallel computer. Although we can easily imagine several ways, we take, for the time
being, the simplest way.

In a parallel version of BASES, the distribution is carried out by the unit of hyper-
cube, not of sampling point due to the simplicity of algorithm. If number of hypercubes
Neupe is a multiple of that of processors N,.4., we can obtain the best performance in
principle. In the case, N.ype < Npoge, We lose the power of N,oqe — Neupe Processors.
Therefore it is recommended to control the number of hypercubes N_,., which depends
on numbers of the wild variables N,;4 and of sampling points N.q;, which are given as
input parameters of the integration (see section 3.5.3). The number N4 is normally
fixed for an elementary process but the number N.y; can be arbitrarily chosen.

The program flow of the parallel version is conceptually depicted in figure 2.7(c), while
figure 2.7(a) shows that for the scalar version (single CPU version). The numerical
integration on a parallel computer proceeds as follows:

1) At the beginning of integration, the subprogram USERIN is called, where several
parameters for integration and integrand are set.

2) At the beginning of the grid optimizing step the grids are set to be uniform, while
in the integration step they are fixed as determined by the grid optimization step.

3) For calculating estimate of the integral, the hypercubes are distributed to each
processor. If the number of hypercubes N, is not a multiple of that of processors
Nyode, some processors have one more hypercube than the others. Since these
differences are negligible small as long as N,y is much larger than N4, it does
not seriously affect to the performance.

4) In each processor, the numerical integration is carried out for those hypercubes
distributed by the step (3). During this procedure a histogram of the function
{f(x)/p(x)}? is made in the grid optimization step.

5) After the integration in each processor is terminated, the estimate of each hy-
percube is transferred from each processor to the central processor, where the
current and also cumulative results of the integral are calculated.

6) If the cumulative results of integration fulfill the convergency condition, either
the grid optimization step becomes the integration step and go to step (4) or the
integration step is terminated and go to the end.

64 CHAPTER 2. THEORETICAL BACKGROUND

7) In the grid optimization step, a histogram information of the function {f(z)/p(z)}?
in each processor is also transferred to the central processor, where a new grid is
determined by using the histogram content, and then go to step (4).

Fig. 2.7 The conceptual program flows of BASES for (a) the scalar version,
(b) the vector version and (c) the parallel version.

2.7. NUMERICAL INTEGRATION 65

Fitting of the execution time T}, with Np.4. processors to an empirical formula

—o0+ 2

TNnode N d
noae

(2.218)

is quite good. The quantity O may give the overhead of integration, which consists of
calculating the cumulative results, data transfer from each processor to the central one
and adjusting the widths of grids. From this formula we can see that if the quantity
O is negligible small comparing to the quantity ¢/N,.qe the more processors make the
execution time the shorter. But if O is comparable to @/Npege increasing number of
processors is not effective.

Another possibility to make the execution time short is to use a vector computer.
The conceptual program flow of the vector version is shown in figure 2.7(b), where
hypercubes are grouped into N, groups similar to the parallel version. The amplitude
calculation for each group is performed by a single CALL of the subroutine VBFNCT with
the vectorized code, while it is performed on different node in the parallel version.
More detailed description of the vector version is appeared in chapter 5.

2.7.4 A weak point in BASES algorithm

There is a crucial restriction on use of BASES. As an example, consider the following
two-dimensional integral with a parameter of e:

I—/ldx/ld 2ye & 7 (e—0) (2.219)
= A A y(m+y_1)2+62 ™ (€ . .

This integrand has a singularity along the line z +y — 1 = 0 as shown in figure 2.8 (a).
4 N

Fig. 2.8 (a) Singularity on the z — y plane, (b) Singularity on the X — Y plane.

J

It runs exactly along a diagonal line of the phase space. During the grid optimization
step, histogram of {f(z)/p(x)}?* is made for each integration variable to determine new

66 CHAPTER 2. THEORETICAL BACKGROUND

intervals of grid for the next iteration. Since, however, any singular behavior may not
be seen in the histogram for this case, the new grid is not to be different appreciably
from the old one. This means that grid cannot be suited for the behavior of this
function. As a result the integration algorithm is identical to the crude Monte Carlo
method. If the width of singularity is not narrow, there may be some probability to
hit the singularity and hence the estimate of integral may be reliable. Since, however,
those singularity with a very narrow width can be rarely hit , an unexpectedly small
value of the estimate may be obtained.

We can, of course, obtain a reasonable result when we throw a huge number of
sampling points per iteration and use a lot of computing time. Since the integration
requires so much computing time even for such a simple function, BASES is practically
useless for a real process with this kind of singularity.

Changing the integration variables from z, y to the new variables X (= z — y),
Y (= z + y) as shown in figure 2.8 (b), where the singularity runs parallel to the X
axis, BASES can give a good answer for each value of e.

Theses two examples show that the choice of an appropriate set of integration
variables is very important to obtain a reliable answer. With an unsuitable combination
of variables, the estimate results in a smaller value than the good answer and its error
is unfortunately not significantly large. But the accuracy for each iteration fluctuates,
iteration by iteration, and, in some case, it jumps up suddenly to a large value compared
to the other iterations. This is the only indication for taking an unsuitable variable
set. Be careful!

2.8 Event generation

There are many ideas to generate random numbers with an arbitrary distribution;
direct method, rejection method, composition method, composition-rejection method
and so on. Since, however, there is no method for general purpose, we have to select
or find an appropriate method, case by case. The program package BASES/SPRING
makes it possible to generate random numbers with an arbitrary multi-dimensional
distribution (50 at maximum) efficiently without such a consideration.

The algorithm of SPRING is quite simple. By the integration algorithm of BASES,
the widths of the grid are adjusted so that each interval of the grid contributes equally
to estimate of the integral. In the multi-dimensional case, this is approximately true,
but not exact. As shown in figure 2.9, the program flow of the event generation by
SPRING is as follows:

1) Integrate the differential cross section over the phase space by BASES. During the
integration the maximum value of function f(z)/p(x) as well as the probability
for each hypercube is calculated.

2) Sample a hypercube (say i-th hypercube) with its probability.

2.8. EVENT GENERATION

67

-

o

Fig. 2.9 The program flow of SPRING
/

3) For each wild variable, sample a small-region in the i-th hypercube and sample
a point in the small-region. For each non-wild variable, sample a small-region
from the full range of the variable and sample a point in the small-region. For
this sampling one random number is enough for one variable.

68 CHAPTER 2. THEORETICAL BACKGROUND

4) If the sampled point ¢ satisfies the condition

f©) f(zi)
p(¢) p(z;)

then this point is accepted as a generating point, subroutine SPEVNT is called and
go to 2). In SPEVNT, users are to save four vectors of the accepted event on a file.

/Mazx.(

) < 1 (= a uniform random number),

5) If not, forget this point and go to 2).

Even by such a simple algorithm events with the distribution of the differential cross
section are easily generated, as long as the differential cross section can be integrated
by BASES. If the grid is not enough optimized, the generation loop (from steps 2)
to 4)) may come into an infinite loop. To avoid getting into this infinite loop, the
maximum number of trials for generating an event is to be given in a main program
as a parameter. It should be noted that the subprograms USERIN and FUNC are to be
identical to those for BASES except for the case where the integrand is a many-valued
function of the integration variables.

Chapter 3
GRACE system

As mentioned in section 1.2.2, GRACE system consists of the following four subsys-
tems:

e Graph generation subsystem
e Source generation subsystem
e Numerical integration subsystem

e Event generation subsystem.

In this chapter the specifications of these subsystems are described. Before coming into
the details, it may be useful to summarize them briefly here.

Graph generation system

Input :

1) Definition of physical process
Specification method of the physical process is described in subsection
3.1.1.

2) The model definition file
Since specification of model is rather complicated, we postpone its de-
scription to chapter 6. We provide a default standard model following
Ref.[1], [2] and we recommend to use this model for the first use of this
system.

Output :

1) Graph information file 0UTDS

2) Drawn figures
Generated graphs are drawn on a graphic device by using the file QUTDS.
They are described in section 3.1.2.

69

70

CHAPTER 3. GRACE SYSTEM

Source generation subsystem

Input :

1)
2)

The model definition file

Graph information file OUTDS
which is generated by the graph generation subsystem.

Output :

1)

Generated FORTRAN source code

There are three kinds of FORTRAN source codes generated by GRACE.
The first is a set of subprograms for amplitude calculation, whose de-
scription is briefly given in section 3.2. These subprograms use the
CHANEL routines through the interface subprograms. Specification of
the interface subroutines and CHANEL routines will be described in sec-
tions 7.2 and 7.3 respectively.

The second is a set of subprograms for the integration program BASES,
which will be explained in section 3.5. The third is a set of subprograms
for the event generation program SPRING and is described in section
3.6. In section 3.3 the program specifications of kinematics routines are
given.

Output of the testing program

The format of output of the generated test program is given in section
3.4.

Numerical integration subsystem

Input :

1)

Subroutines for the kinematics

We leave writing the kinematics part to users, since it is difficult to
generate this part automatically as mentioned in section 3.4. The de-
scription of related subprograms is given in section 3.3.

Subroutines for the amplitude calculation

These subprograms are generated by the source generation subsystem
described in section 3.2.

Subprograms for the integration by BASES

Before integration by BASES, users should prepare subprograms USERIN
and FUNC. Specifications of these subprograms are described in section
3.5, as well as the input parameters for the integration.

Output :

1)

Print out

The format of output of BASES is given in section 3.5. There may be
statistical error in the Monte Carlo integration and systematic error in
user’s kinematic subroutines. So it is very important to see whether the
result is reliable or not.

71

2) Probability information file
As the result of integration, the probability information, contents of
histograms etc. are saved in this file, which is used for event generation.

Event generation subsystem

Input :

1) Subroutine for the kinematics
2) Subroutines for the amplitude calculation

3) Subprograms for the program package SPRING
Subprograms SPINIT, SPEVNT and SPTERM are required to prepare. In
section 3.6 their specifications are given besides the input parameters.

4) Probability information file
which is generated by BASES.

Output :

1) Print out
The print out format is given in subsection 3.6.4. This is very useful
to see whether the generated events reproduce really the distribution of
differential cross section.

2) Output file for the generated events
Generated events are passed to detector simulator or simulator of par-
ticle decay. Section 3.6 describes how to deal generated events for this
purpose.

The generated FORTRAN code uses default values of mass parameters, coupling
constants and other parameters, whose values are set in the subprogram SETMAS. If one
wants, one can change these values by modifying this subroutine.

Although many physical processes have been calculated for testing the GRACE sys-
tem, it is still possible that a new error may occur in a new reaction. It is important
to check the result in a systematic way. Possible origin of error will be

1) Unsuited kinematical variables to the integrand,

2) Bugs in the kinematics,

3

Large numerical cancellation,

(
(
(
(4

)
)
)
) Bugs in the GRACE.

Numerical cancellation is the most difficult problem to control. Even if the program
is logically correct, it is possible to produce completely wrong result. Some of numerical
cancellation can be avoided by improving kinematics, but others require modification
of generated code.

Anyway one has to check the result intensively. Usual checking method is as follows:

72 CHAPTER 3. GRACE SYSTEM

Check gauge invariance of the result,

Check Lorentz frame invariance of the result,

(1)

(2)

(3) Check numerical stability of the result,

(4) Changing the number of sampling points in the numerical integration,
(5)

Comparison with other results.

Before the numerical integration, one should confirm that the generated FORTRAN
source code is correct one. GRACE system generates a test program, which provides
a gauge invariance test by comparing the resultant values on a phase space point for
different values of gauge parameters. One can check some kind of numerical cancellation
or inconsistency in the generated code. This is the easiest way of checking. However,
since this program checks only at one point, one may miss errors in the different region
of the phase space.

Since the amplitude is calculated by a numerical way in a special Lorentz frame, one
can test the program by changing reference frame. This method also checks numerical
cancellation partially, as the four components of momenta are changed.

Direct checking method of numerical cancellation is to change precision of the cal-
culation. If your compiler has an option to change precision of floating point number,
it will easy and powerful method.

The correctness of the kinematics subroutines and statistical reliability will be
checked by careful reading of output of BASES and changing parameters of BASES.
If kinematics subroutines fails to catch steep peeks of the differential cross section, the
final value may be completely wrong.

3.1 Graph generation

3.1.1 Definition of the physical process

In order to define a physical process we give the order of coupling constants and names
of external particles as the input.
We show an example, which specifies the process eTe™ — WTW ™+, in figure 3.1.

\
* 5120 E+ E- => W+ W- A TREE

WORDER 3
INITIAL EL 1
INITIAL EILB 1
FINAL WB 1
FINAL WBB 1
FINAL AB 1
END

Fig. 3.1 Input file for defining physical process

_ /

3.1. GRAPH GENERATION 73

The format of input is as follows:

1) Comment line
The first line is a comment line, but it should never be omitted. It is copied to
output files to indicate the process.

2) The order of coupling constants
The second line in the example indicates the order of coupling constants.

WORDER 3

implies that the order of electroweak interaction (order of perturbation) is 3.
When one want to restrict the process to pure QED,

EORDER

should be assigned. It is noted that WORDER and EORDER are not allowed to set
at the same time. For QCD one should give the order of QCD coupling by

CORDER.

Combination of WORDER and CORDER or that of EORDER and CORDER are allowed.
In that case the order of each interaction should be defined in different line.

3) External particles
To define the external particles, in the first column one has to give whether the
current particle is in the INITIAL or FINAL state. Then name of this particle
follows. If it is anti-particle, B should be added to the end of the name. For the
W-boson, WB defines W, so that W~ is written as WBB. In the last column the
number of identical particles is given by an integer.

Table 3.1 shows a list of particle names defined in the model definition file, whose
format is described in chapter 6.

In UNIX system, many files named like “dnnnn” are given under the directory
$GRACEDIR/data/ as examples of the input file, whose list is in the file “Index” (see
also section 4.1). The contents of file “Index” is given in Table 3.2, where the last
three numbers of each line are the orders of perturbation, WORDER, EORDER and CORDER.
If there is the target process in this list, the first number dnnnn indicate the file name
which contains the input parameters for that process like figure 3.1. For example, if
one wants to calculate ete” — WW v, one can use the file d5120. When one cannot
find the process to be studied, it would be easy to make input file by copying a similar
process’s file.

The file particle.table under the same directory contains all the information on the
model used in the graph generation and source generation subsystems.

74

CHAPTER 3.

GRACE SYSTEM

name of particle

WB Wt

ZB VA

AB 0%

XB xT

X3 X3

PH ¢ (Higgs boson)
NE Ve

NM vy

NT v,

EL e

MU wo

TA T

uQ u-quark

cq c-quark

TQ top-quark

DQ d-quark

sQ s-quark

BQ b-quark

CP ct (ghost for W)
cM ¢~ (ghost for W)
CZ cZ (ghost for Z)
cA ¢4 (ghost for photon)
GL gluon

CG ¢ (ghost for gluon)

Table 3.1 Names of particles in the default model definition file

\

/
~
d3010 A => E+ E- TREE 0 1 O
d3020 A =>TU UB TREE 1 0 O
d3030 W- => E- NUB TREE 1 0 O
d3040 W+ => U DB TREE 1 0 O
d3050 Z => E+ E- TREE 1 0 O
d3060 Z => W+ W- TREE 1 0 O
d3070 Z=>12712 TREE 1 0 O
d3080 G =>7TU UB TREE 0 O 1
d4010 E- E- => E- E- TREE 2 0 O
d4020 E+ E- => E+ E- TREE 2 0 O
d4030 E+ E- => MU+ MU- TREE 2 0 O
d4040 E+ E- = U UB TREE 2 0 O
d4050 E+ E- => A A TREE 2 0 O
d4060 E+ E- => W+ W- TREE 2 0 O
d4070 E- NEB => D UB TREE 2 0 O
d4080 U DB =>U DB TREE 0 O 2
d4110 W+ W- => W+ W- TREE 2 0 O
Table 3.2 The list of processes in the file Index
continued to the next page

3.1. GRAPH GENERATION

-

d4090
d4100
d4140
d4150
d4120
d4130
d4160
d4170
d4180
d5010
d5020
d5030
d5040
d5050
d5060
d5070
d5080
d5090
d5100
d5110
d5120
d5130
d5140
d5150
d5160
d5170
d5180
d6010
d6020
d6030
d6040
d6050
d6060
d6070
d6080
d6090
d6100
d6110
d6120
d6130
d6140
d6150
d6160
d6170
d6180
d7010

U UB ==G G TREE 0 O
U UB =>A Z TREE 2 O
A A =12 Z TREE 2 O
G G =>U ©UB TREE 0 O
W+ W- =>12Z Z TREE 2 O
Z Z => Z Z TREE 2 O
G G =G G TREE 0 O
E+ E- => NE NEB TREE 2 O
A A =W+ W- TREE 2 O
E+ E- =>E+ E- A TREE 3 O
E+ E- => E- NEB W+ TREE 3 0
E+ E- => MU+ MU- A TREE 3 0
U UB ==C CB G TREE 0 O
W+ W- => W+ W- A TREE 3 O
Z Z = 7 Z A TREE 3 O
U A =U G G TREE 0 1
G A =>U UB G TREE 0 1
A A =>U UB G TREE 0 2
U G =>U G G TREE 0 O
E+ E- =>E+ E- 1Z TREE 3 O
E+ E- => W+ W- A TREE 3 O
E+ E- => NE NEB A TREE 3 O
E+ E- = W+ W- 2Z TREE 3 O
G G =>U UB G TREE O O
E+ E- = 12Z Z A TREE 3 O
E+ E- => NE NEB PH TREE 3 O
NE MU =>E- NM A TREE 3 0
E+ E- => E+ E- A A TREE 4 O
E+ E- => E+ E- MU+ MU- TREE 4 O
E+ E- => MU+ MU- MU+ MU- TREE 4 O
U UB =>C CB G G TREE 0 O
W+ W- => W+ W- W+ W- TREE 4 O
Z Z => Z Z Z Z TREE 4 O
Z Z = W+ W- Z Z TREE 4 O
E+ E- =U UB G G TREE 0 2
E+ E- ==U UB U TUB TREE 0 2
E+ E- ==U UB D DB TREE 0 2
A A =D DB G G TREE 0 2
E+ E- = W+ W- Z Z TREE 4 O
E+ E- => MU+ MU- A A TREE 4 O
A A =>E+ E- E+ E- TREE 4 O
E+ E- => W+ W- NE NEB TREE 4 O
E+ E- => W+ W- E+ E- TREE 4 O
E+ E- = PH PH NE NEB TREE 4 O
E+ E- => E+ E- MU+ MU- TREE 0 2
E+ E- =D DB G G G TREE 0 2

Table 3.2 The list of processes in the file Index

WO OOOOOONNNMNMDNOOOPROOOOODOWOOOOWEFRNNOOWOOOOONMOONMNOON

75

76 CHAPTER 3. GRACE SYSTEM

3.1.2 Drawn Feynman graph

In the graph generation, a file OUTDS is created under the current directory, where the
graph information is stored. By typing command “draw”, Feynman graphs are drawn
on the screen when the X-Window system is supported. The drawing method is very
primitive. There are two kinds of vertecies, those on a fermion line and the others.
Vertecies of first kind are placed on the fermion lines, where the positions of fermion
lines and vertecies are arranged so that fermion lines could not cross each other. The
other vertices are placed at fixed positions in accordance with the number of vertices.
The convention of drawing graph is as follows:

1) External particle lines carry the labels of particle name, such as EL I or WB F.
Here I and F mean initial and final particle, respectively.

2) The arrow attached to the internal line does not indicate fermion number but the
direction of the flow of the quantum number (charge) — 2 x (baryon number).

The quality of drawn figures are not so good. It will be improved in future after a
detailed analysis of graph structure. Figure 3.2 shows drawn graphs for the process
ete” = WTW .

4 N

Fig. 3.2 An example of drawn Feynman graphs
continued to the nect page

3.1.

GRAPH GENERATION

7

-

Fig. 3.2 An example of drawn Feynman graphs
continued to the next page

78

CHAPTER 3. GRACE SYSTEM

Fig. 3.2 An example of drawn Feynman graphs

~

3.2. GENERATED SOURCE CODE 79

3.2 Generated source code

There are three kinds of program components. The first is for the amplitude calcu-
lation, the second is necessary for the integration by BASES and the third is for the
event generation by SPRING. The interrelation among the subprograms generated by
GRACE is depicted in figure 3.3, where those subprograms in the white box are auto-
matically generated by GRACE, while those in the shaded box are already contained
in other program packages BASES/SPRING, interface program library to CHANEL, and
program package CHANEL. The program specifications of the libraries BASES/SPRING,
the interface to CHANEL and program package CHANEL are described in sections 3.5, 7.2
and 7.3, respectively.

4 M

Fig. 3.3 Relation among the generated subprograms

_ J

In the following these three kinds of program components are summarized. The most
of components used in BASES are required also in SPRING, so that they appear in the
both items.

80

CHAPTER 3. GRACE SYSTEM

1) a set of program components for amplitude calculation

SETMAS
AMPARM
AMPTBL
AMPSUM

AMnnnn

AMPORD
incll.f

incl2.f
TEST

(subroutine)
(subroutine)
(subroutine)
(subroutine)

(subroutine)

(subroutine)

(include file)

(include file)
(main)

defines masses and decay widths of particles.
defines coupling constants and others.

calls AMnnnn to calculate amplitudes.

sums matrix elements over the helicity

states. A matrix element is the square of

the sum of amplitudes.

calculates amplitude of the nnnn-th graph, where
the number nnnn of the routine name is equal to
the graph number.

arranges amplitudes.

defines the common variables for masses, ampli-
tude tables etc.

defines the work space for AMPTBL.

works as the main program for testing gauge
invariance.

2) a set of program components for the integration by BASES

MAINBS
USERIN
KINIT
FUNC

KINEM

USROUT
inclh.f

(main)

(subroutine)
(subroutine)
(function)

(subroutine)

(subroutine)
(include file)

is the main program for the integration.

initializes BASES and user’s parameters.

initializes kinematics.

calculates the numerical values of differential cross
section.

derives particle four momenta from the integration
variables.

prints the amplitude summary table.

defines the size of the histogram buffer.

3) a set of program components for the event generation by SPRING

MAINSP
USERIN
KINIT
FUNC

KINEM

inclh.f
SPINIT
SPEVNT
SPTERM

(main)

(subroutine)
(subroutine)
(function)

(subroutine)

(include file)
(subroutine)
(subroutine)
(subroutine)

is the main program for the event generation.
initializes BASES and user’s parameters.

initialize kinematics.

calculates the numerical values of differential cross
section.

derives particle four momenta from the integration
variables.

defines the size of the histogram buffer.

initializes routine for user’s purpose.

saves four vectors on a file.

is called at the termination for user’s purpose.

Although the program components inclh.f, USERIN, KINIT, FUNC and KINEM are
created automatically by GRACE, they are still smcomplete. Especially the kinematics

3.2. GENERATED SOURCE CODE 81

routines KINIT and KINEM are to be filled up by the user according to their specifications
described in section 3.3. Example of these routines for the process ete™ — WTW v
are also given there.

The subprograms USERIN and FUNC are used both in the numerical integration by

BASES and the event generation by SPRING. In the user initialization routine USERIN,
subroutines KINIT is called for initializing kinematics part. The routines SETMAS and
AMPARM are called for the initializtion of amplitude calculation.
The function subprogram FUNC is used for calculating the numerical value of differential
cross section, where subroutine KINEM is called for calculating four vectors of external
momenta and subroutines AMPTBL and AMPSUM are called for the amplitude calcula-
tion. Since specifications for USERIN and FUNC are described in sections 3.5.3 and 3.5.4
respectively, in this section we mention the amplitude calculation part briefly.

3.2.1 Initialization of amplitude calculation

Parameters for the amplitude calculation are set in subprograms SETMAS and AMPARM,
and are passed to the relevant subroutines through the several commons, which are
given in the include file incl1.f.

Subroutine SETMAS

The structure of subprogram SETMAS is shown in the source list 3.1. In SETMAS the
following fundamental parameters are defined.

1) Masses and widths are defined.

2) Gauge parameter
The information about the gauge parameters is summarized in the include file
incll.f.

Calculation either in covariant gauge(R¢-gauge) with an arbitrary gauge pa-
rameter or in unitary gauge is possible in GRACE system. The distinction between
them is given by integer variables in the common /SMGAUS/.

COMMON /SMGAUS/IGAUOO, IGAUAB, IGAUWB, IGAUZB, IGAUGL

where IGAUAB, IGAUWB, IGAUZB and IGAUGL are the gauge selection flags for pho-
ton, W=, Z° and gluon, respectively. Unitary gauge Eq.(2.101) is selected by
setting flag IGAUzz to O for zx boson. This is effectively equivalent to the case
where the gauge parameter of zz boson is set equal to infinity.

For the covariant gauge, four different values of gauge parameters can be set by
using an array AGAUGE (%) (¢ runs from 1 to 4).

In the generated FORTRAN code, unitary gauge is taken as the default gauge.

COMMON /SMGAUG/AGAUGE(0:4)
REAL*8 AGAUGE

82

CHAPTER 3. GRACE SYSTEM

AGAUGE (IGAUAB), AGAUGE(IGAUWB), AGAUGE (IGAUZB) and AGAUGE (IGAUGL) rep-
resent the values of gauge parameters a4, aw, az and ag, respectively (see
Eq.(2.50)). To give different values of gauge parameters for each boson, the flags
IGAUAB, IGAUWB, IGAUZB and IGAUGL are to be set equal to 1, 2, 3, and 4, re-
spectively, for example. Of course, the values should be set for the variables
AGAUGE (IGAUzz)s here.

Spin summation
The components of spin and polarization vector are controlled by

Fermion : 0 (helicity = —1), 1 (helicity = +1)
Vector boson : 0, 1 (transverse), 2 (longitudinal).

For each external particle I of non-zero spin, the spin summation is taken from
JHS(I) to JHE(I) as follows;

ANS = 0.0
DO 100 J = JHS(I), JHE(I)
ANS = ANS + table_of_amplitude(J)
100 CONTINUE

where

JHS(I) =0

JHE(I) = LEPEXA - 1
and

LEPEXA = 2

for the external photon as an example. In the generated code, the spin summation
is originally arranged to give unpolarized cross section. The spin freedoms of
external particles are given in the include file inc11.f (see Source list 3.3) as
follows;

LEPEXA = 2 spin freedom of external photon
LEPEXW = 3 spin freedom of external W* boson
LEPEXZ = 3 spin freedom of external Z° boson
LEPEXG = 2 spin freedom of external gluon
LEXTRN = 2 spin freedom of external fermion

The variable ASPIN is the normalization factor of spin average for initial bosons
and fermions.

Selection of diagrams

If one sets the i-th element of the array JSELG() to “zero”, then one can omit
the corresponding #th graph and skip the calculation of this amplitude. Each
element of the array correspond to the graph number which can be read off from
the drawn picture of graphs.

3.2. GENERATED SOURCE CODE

-

*

SUBROUT
IMPLICI

INCLUDE
COMMON

INE SETMAS
T REAL*8(A-H,0-Z)

’incll.f’
/AMSPIN/JHS(NEXTRN) , JHE(NEXTRN), ASPIN

* Graph selection

DO 10 NG = 1, NGRAPH
JSELG(NG) = 1
10 CONTINUE
Mass
AMWB = 80.0DO
AMZB = 91.1DO
AMAB = 0.0DO
AMEL = 0.511D-3
AMMU = 105.658387D-3
- masss of particle.
Width
AGWB = 0.0DO
AGZB = 0.0DO
AGAB = 0.0DO
AGEL = 0.0DO
AGMU = 0.0DO

decay width of particle.

Gauge parameters (default is unitary gauge)

IGAUAB = 0O
IGAUWB = O
IGAUZB = 0O
IGAUGL = O
AGAUGE (IGAUOO) = 1.0DO
AGAUGE (IGAUAB) = 1.0DO
AGAUGE (IGAUWB) = 1.0DO
AGAUGE(IGAUZB) = 1.0DO
AGAUGE (IGAUGL) = 1.0DO
£ 3
* Spin average Control of spin summation.
ASPIN = 1.0DO
* 1: EL INITIAL LPRTCL
JES(1) =0
JHE(1) = LEXTRN - 1
ASPIN = ASPIN/DBLE(JHE(1)-JHS(1)+1)
* 2: EL INITIAL LANTIP
JEIS(2) =0
JHE(2) = LEXTRN - 1
ASPIN = ASPIN/DBLE(JHE(2)-JHS(2)+1)

Source list 3.1 subprogram SETMAS
continued to the next page

83

84 CHAPTER 3. GRACE SYSTEM

4 N
* 3: WB FINAL LPRTCL
JES(3) =0
JHE(3) = LEPEXW - 1
* 4: WB FINAL LANTIP
JHS(4) =0
JHE(4) = LEPEXW - 1
* 5: AB FINAL LPRTCL
JHS(5) =0
JHE(5) = LEPEXA - 1
*
RETURN
END
Source list 3.1 subprogram SETMAS

_ /

Subroutine AMPARM

In the source list 3.2 the structure of subprogram AMPARM is given, which prepares the
following items:

1) Version number
The version number of GRACE system is compared with that of the interface
package to CHANEL in SMINIT. If they are not consistent, job is terminated for the
sake of safty.

4 M

SUBROUTINE AMPARM
IMPLICIT REAL*8(A-H,0-Z)

INCLUDE ’incli.f’
COMMON /AMCNST/ PI, PI2, RAD, GEVPB, ALPHA

CALL SMINIT(1, 0)
* Constants

PI = ACOS(- 1.0D0O)
PI2 = PI x PI

RAD = PI / 180.0DO
GEVPB = 0.3893857D9
ALPHA = 7.2973503D-3
AMWB2 = AMWB*AMWB
AMZB2 = AMZB*AMZB

constant parameters for vertex.

Source list 3.2 subprogram AMPARM
continued to the nect page

3.2. GENERATED SOURCE CODE 85

-

~
vvv
CZwwW = CE*GW
CAWW = CE
......... coupling constants
QCD coupling constant should be calculated in ’KINIT’.
CQCb = 1.0DO
CQCDsSQ = 1.0DO
€QQG(1) = -1.0DO
€QQG(2) = -1.0D0
Color facotr
DO 100 I = 1, NGRAPH
IGRAPH(I) = 0
DO 100 J = 1, NGRAPH
CF(J, I) = 1.0D0
100 CONTINUE
RETURN
END
Source list 3.2 subprogram AMPARM y

2) Constants
Numerical constants 7, 72, /180, GeV/pb and a = e?/4r for the amplitude
calculation are set and some of them are passed through the common /AMCNST/
for later use.

3) Coupling constants
Coupling constants for various vertices are calculated.

4) Color facotrs
Color factors (the array CF(4,j)) for each combination of two graphs are calcu-
lated.

Include file incll1.f

This file is prepared for passing the parameters for the amplitude calculation set in
the subroutines SETMAS and AMPARM to the relevant subroutines through the several
commons. In the source list 3.3 the structure of incli.f for the process ete™ —
WHW v is shown.

1) Parameter statements
The parameters which define the sizes of arrays are given by the parameter state-
ment. LEPEXA, LEPEXW, LEPEXZ and LEPEXG are the spin freedoms of external
photon, W-boson, Z-boson and gluon, respectively. LEPINA, LEPINW, LEPINZ and
LEPING are those for internal lines. LEXTRN and LINTRN are the spin freedoms for
fermions of external and internal lines, respectively.

86

CHAPTER 3. GRACE SYSTEM

The parameters LOUTGO, LINCOM, LANTIP and LPRTCL are just the input constants
for the program package CHANEL.

Table of amplitude
The calculated amplitudes for all graphs are stored in an array AG(). An array
APROP() is used to keep the numerical value of the denominators of propagators.

The arrays AV(), LT() and INDEXG() in the common /SMATBL/ are for tem-
porary use.

Masses and widths
The variables in the commons /AMMASS/ and /AMGMMA/ are masses and widths of
particles, respectively, which are defined in SETMAS.

Coupling constants
The coupling constant for each type of vertex is in the common /AMCPLC/, which
is defined in AMPARM.

Four momenta of external particles

The four momenta of external particles are given in the arrays PEnnnn(), where
the fourth components correspond to the energies. An array PPROD(7,7) gives
the inner products of particle momenta ¢ and j. They are derived in KINEM and
copied to these arrays in FUNC.

CHANEL inputs for the external particles

The arrays PSnnnn, EWnnnn, CEnnnn and EPnnnn are the lists of light-like vectors,
weight factors, phase factors and list of polarization vectors, respectively, which
are defined in section 2.4.

PARAMETER (LOUTGO = 2, LINCOM = 1) h
PARAMETER (LANTIP = -1, LPRTCL = 1)
PARAMETER (LSCALR = 1)
PARAMETER (LEPEXA = 2, LEPEXW = 3, LEPEXZ = 3, LEPEXG = 2)
PARAMETER (LEPINA = 4, LEPINW = 4, LEPINZ = 4, LEPING = 3)
PARAMETER (LEXTRN = 2, LINTRN = 4)
* Table of amplitudes
PARAMETER (NGRAPH = 28, NEXTRN = 5, LAG = 72)
PARAMETER (NGRPSQ = NGRAPH*NGRAPH)

COMMON /AMSLCT/JSELG (NGRAPH), JGRAPH, JHIGGS, JWEAKB
COMPLEX*16 AG, APROP
COMMON /AMGRPH/AG(0:LAG-1,NGRAPH), APROP(NGRAPH),

& ANCP (NGRAPH) , ANSP(0:NGRAPH),

& CF (NGRAPH,NGRAPH) , IGRAPH(NGRAPH)

Source list 3.3 Include file incl1.f

continue to the next page

3.2. GENERATED SOURCE CODE

87

* Masses and width of particles
COMMON /AMMASS/AMWB,AMZB,AMAB, AMXB, AMX3,AMPH, AMLU, AMNE , AMNM, AMNT,

& e
COMMON /AMGMMA/AGWB,AGZB,AGAB,AGXB,AGX3,AGPH,AGLU, AGNE, AGNM, AGNT,
&
* Coupling constants
COMMON /AMCPLC/CZWW » CAWW ,CWWAA ,CWWZA ,
&

* Momenta of external particles
COMMON /AMEXTR/PE0001 (4) ,PE0002(4) ,PE0003(4) ,PE0004 (4),
& PEO005 (4) ,
& PPROD (NEXTRN, NEXTRN)
* Switch of gauge parameters
COMMON /SMGAUS/IGAUOO,IGAUAB,IGAUWB,IGAUZB, IGAUGL
COMMON /SMGAUG/AGAUGE(0:4)
* Normalization
COMMON /SMDBGG/FKNORM,FKCALL ,NKCALL
* Calculated table of amplitudes
COMMON /SMATBL/AV, LT, INDEXG
COMPLEX*16 AV(0:LAG-1)
INTEGER LT(0:NEXTRN) , INDEXG(NEXTRN)
* For external particles
COMMON /SMEXTP/
PS0001, EW0001, CEOO001,
PS0002, EW0002, CE0002,
EP0O003, EW0003,
EP0004, EW0004,
EP0005, EWO005
REAL*8 PS0001(4,2), EWO001(1)
COMPLEX*16 CE0001(2,2)
REAL*8 PS0002(4,2), EW0002(1)
COMPLEX*16 CE0002(2,2)
REAL*8 EP0003 (4,LEPEXW) , EWO003 (LEPEXW)
REAL*8 EP0004 (4,LEPEXW) , EW0004 (LEPEXW)
REAL*8 EP0O005(4,LEPEXA) , EWO005 (LEPEXA)

e

Source list 3.3 Include file incl1.f

_

3.2.2 Amplitude calculation

To calculate the numerical values of amplitudes, first the values of integration vari-
ables are translated into the four momenta of external particles, which is done by the
subroutine KINEM. Then the subroutine AMPTBL is called to calculate the amplitudes.

Subroutine AMPTBL

The subroutine AMPTBL for the process ete”™ — W™W ™+ is shown in the source list

3.4, whose functions are as follows;

88

CHAPTER 3. GRACE SYSTEM

1) External particles

At the beginning of AMPTBL all the information about the external fermions and
vector bosons are prepared in suitable form for the calculation of vertices as shown
in the source list 3.4. For the external fermion (vector boson) the subroutine
SMEXTF (SMEXTV) is called for this purpose, whose specifications are given in
section 7.2.

SUBROUTINE AMPTBL)
*x 5120 E+ E- => W+ W- A TREE
IMPLICIT REAL*8(A-H,0-Z)
INCLUDE ’incll.f’
INCLUDE ’incl2.f’
B e e
JGRAPH = 0O
* External lines
CALL SMEXTF (LINCOM,AMEL,PE0001,PS0001,CE0001)
EW0001(1) = LPRTCL
CALL SMEXTF (LOUTGOD,AMEL,PE0002,PS0002,CE0002)
EW0002(1) = LANTIP
CALL SMEXTV(LEPEXW,AMWB,PE0003,EP0003,EW0003,IGAUWB)
CALL SMEXTV(LEPEXW,AMWB,PE0004,EP0004,EW0004,IGAUWB)
CALL SMEXTV(LEPEXA,AMAB,PE0005,EP0005,EW0005,IGAUAB)
* Graph NO. 1- 1(1)
IF (JSELG(1) .NE.O) THEN
JGRAPH = JGRAPH + 1
IGRAPH(JGRAPH) = 1
CALL AMOOO1
ENDIF
* Graph NO. 28 - 1 (28)
IF (JSELG(28).NE.0) THEN
JGRAPH = JGRAPH + 1
IGRAPH(JGRAPH) = 28
CALL AMOO28
ENDIF
RETURN
END
Source list 3.4 Example of subroutine AMPTBL
_ J

The variables LEPEXW and LEPEXA represent the spin freedoms of external W-
bosons and photon, respectively, and are set in the include file incl1.f by the
parameter statement as shown in the source list 3.3. For the fermion the vari-
able EWnnnn(1) is set equal to “1” for particle or “—1” for anti-particle. In

3.2. GENERATED SOURCE CODE 89

2)

this example, EW0001(1) is set equal to “1” (electron) and EW0002(1) to “—1”
(positron).

Calculation of each amplitude

The subroutine AMnnnn is called to calculate the nnnn-th graph. Since there are
28 graphs in the process ete” — WTW +, there are 28 subroutines from AM0001
to AM0028. The flag JSELG (%) is used for selecting the graph. If it is set equal to
“zero” in the subroutine SETMAS the corresponding i-th graph is not included in
the calculation. This flag is to be set by the user for the time being, but it will
be implemented in near future.

Subroutine AMnnnn

A main part of amplitude calculation appears in subroutines AMnnnns. To describe the
amplitude generation in section 2.4, we take a Feynman graph as an example in the
process ete™ — WHTW ™+ shown in figure 2.1. The correspoding subroutine to the
graph is AM0026, whose compositions are as follows;

1)

Internal momenta
The internal momenta PE0183 and PE0185 are calculated from the external mo-
menta, which correspond to those of internal neutrino and W-boson, respectively.

Propagators

The product of denominators of propagators is calculated by the subroutine
SMPRPD, where the inputs are the momentum transfer, mass square and mass
times width.

The numerator of each propagator is handled by the subroutines SMINTF and
SMINTV for the internal neutrino and W-boson, respectively.

Vertices

Numerical values of vertex amplitudes are calculated by subroutines SMFFV and
SMVVV. By SMFFV the vertices 7,e” W™ and e"v, W~ are calculated and for the
vertex W~ W™~ subroutine SMVVV is used. The calculated amplitudes of vertices
vee W+ and etv,W~ and W~ W+ are saved in the arrays AV0122, AV0123 and
AV0124, respectively.

Connection of vertices

First the vertices 7,e- W™ and eTv,JW/~ are connected by the routine SMCONF,
where the amplitudes AV0122 and AV0123 are combined by summing over all the
possible helicity states of the internal neutrino with weight EW0183. The resultant
amplitude is stored in an array AV0125.

Second the resultant amplitude AV0125 and W~ W v amplitude AV0124 are con-
nected by taking summation over all the possible polarization states of internal
W-boson with weight EW0185 using the routine SMCONV. The total amplitude is
saved in an array AV.

90 CHAPTER 3. GRACE SYSTEM

5) Rearrange the internal structure of amplitude
In order to sum up all amplitudes, they have to have the same internal structure.
However, the internal structure of amplitude AV does strongly depend upon the
order of constructing the amplitude, which may be different graph by graph. A
subroutine AMPORD is used to change the amplitude AV in an individual structure
into the amplitude AG in an unified structure.

e N
* Graph No. 26 - 1 (26)
SRR S K o KR KR SR K S K o KoK KKK K oK K o K o KK KK oK K o Ko KoK KK ok K o K o KoK KK ok K o K o ko o sk K o K o ko o sk ok o
SUBROUTINE AMO026
IMPLICIT REAL*8(A-H,0-Z)

INCLUDE ’incli.f’

COMMON /AMWORK/

& PEO183, EW0183, PS0183, VM0183, CE0183,
& PEO185, EP0185, EW0185, VM0185,

& AV0122, AV0O123, AV0124, AVO125

COMMON /AMWORI/

& LTO0122, LTO0123, LTO0124, LTO0125

* 5856+ 68 bytes used.
REAL*8 PE0183(4), EW0183(2), PS0183(4,3), VM0183
COMPLEX*16 CE0183(2,4)
REAL*8 PE0185(4), EP0185(4,LEPINW), EWO185(LEPINW), VM0185

INTEGER LT0122(0:3)

COMPLEX*16 AV0122(0:LINTRN*LEXTRN*LEPEXW-1)
INTEGER LT0123(0:3)

COMPLEX*16 AV0123(0:LEXTRN*LINTRN*LEPINW-1)
INTEGER LT0124(0:3)

COMPLEX*16 AV0124(0:LEPINW+LEPEXW*LEPEXA-1)
INTEGER LTO125(0: 4)

COMPLEX*16 AV0125(0:LINTRN*LEPINW#LINTRN*LEPINW-1)

* Internal momenta
DO 26 I =1, 4
PE0183(I) = -PE0002(I) +PE0003(I)
PE0185(I) -PE0004 (I) -PE0005(I)
26 CONTINUE
APROP (JGRAPH) = 1.0DO
VMO183 = - 2.0DO*PPROD(2, 3) + 1.0DO*AMWB**2 + 1.0DO*AMEL*%*2
CALL SMPRPD (APROP (JGRAPH) ,VM0183, AMNE**2, AMNE*AGNE)
VM0185 = + 2.0DO*PPROD(4, 5) + 1.0DO*AMWB#**2 + 1.0DO*AMAB**2
CALL SMPRPD (APROP (JGRAPH) ,VM0185, AMWB**2, AMWB*AGWB)
* Internal lines
CALL SMINTF (AMNE,PE0183,VM0183,EW0183,PS0183,CE0183)
CALL SMINTV(LEPINW,AMWB,PE0185,EP0185,EW0185,VM0185,IGAUWB)

Source list 3.5 Subroutine AM0026 for eTe™ — WHW vy
continue to the next page

3.2. GENERATED SOURCE CODE

91

*

*

Vertices
CALL SMFFV(LINTRN,LEXTRN,LEPEXW,EW0183,EW0002,AMNE, AMEL,
& CWEL (1,2),CE0183,CE0002,PS0183,PS0002,EP0003
& ,LT0122,AV0122)
CALL SMFFV(LEXTRN,LINTRN,LEPINW,EW0001,EW0183,AMEL,AMNE,
& CWEL (1,1),CE0001,CE0183,PS0001,PS0183,EP0185
& ,LT0123,AV0123)
CALL SMVVV(LEPINW,LEPEXW,LEPEXA,-1,-1,-1,CAWW ,PE0185,PE0004,
& PE0005,EP0185,EP0004 ,EP0005,LT0124,AV0124)

Connect vertices.
CALL SMCONF(LT0123,LT0122, 2, 1,EW0183,AV0123,AV0122,

& LT0125,AV0125)

CALL SMCONV(LT0124,LT0125, 1, 2,EW0185,AV0124,AV0125,
& LT,AV)

APROP (JGRAPH) = +1.0DO/APROP (JGRAPH)
INDEXG(1) = 4

INDEXG(2) = 5

INDEXG(3) = 1

INDEXG(4) = 2

INDEXG(5) = 3

CALL AMPORD(LT, AV, INDEXG, AG(0,JGRAPH))
RETURN

END

Source list 3.5 Subroutine AM0026 for ete™ — WHTW ~v

92 CHAPTER 3. GRACE SYSTEM

3.3 Specification of the kinematics routines

None of essential part of kinematics is generated by GRACE. The reason is that in general
the choice of integration variables is highly dependent on the structure of singularities
in the amplitude squared, such as infrared divergence, mass-singularity and ¢-channel
photon exchange. It is quite difficult to prepare a kinematics enough general for any
process. Therefore the user has to write the kinematics most appropriate for the process
to be calculated. The subroutines which the user should complete are

KINIT [Initialization of kinematics.
KINEM Calculate four-momenta of final particles from integration
variables.

In the generated program the energy of a particle is stored in the 4-th component
of the array which express the four-momentum.

3.3.1 Subroutine KINIT

KINIT makes the initialization of the kinematics and is called by USERIN. BASES calls
USERIN at the beginning. The template of USERIN is generated by GRACE and is to be
finalized by the user. The functions of USERIN are

1) Initialization of Amplitude calculation
Call SETMAS and AMPARM.

2) Initialization of kinematics
Call KINIT for intialization of kinematics

3) Initialization of BASES parameters
Set the parameters for BASES. These parameters are transmitted to BASES through
the commons /BASE1/ and /BASE2/.

4) Initialization of histograms
Let BASES know the number of histograms and that of scatter plots by calling
BHINIT and initialize histograms.

5) Initialization of amplitude summary table
After the integration a summary table of the contribution from each graph to
the cross section is printed out. The buffer for the amplitude summary table is
initialized.

An example of USERIN for the process ete™ — WTW = will be shown in section 3.5.3.
In the source list 3.6 the subroutine KINIT for the process ete™ — WTW 1« is
shown, of which the program structure is as follows:

1) Masses EM and WM are set and are passed through the common /MASS1/.

3.3. SPECIFICATION OF THE KINEMATICS ROUTINES 93

2) Initialize the CM energy and parameters for kinematics and are passed through
the commons ENRGY and TRNSF.

3) Initialize several cut parameters and are passed through the commons KCUTS and

ACUTS.

4) The maximum number of multiplicity MXREG is set and are passed through the

common

/AMREG/. This parameter MXREG is used in FUNC (See section 3.5.4).

5) Finally the cut parameters are printed out.

IMPLIC

COMMON
&
&
COMMON
&
&

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

DIMENS
DATA W

*¥--- 2, Ini
C

SUBROUTINE KINIT

IT REAL*8(A-H,0-Z)

* Masses and width of particles

/AMMASS/AMWB, AMZB, AMAB, AMXB, AMX3, AMPH, AMLU, AMNE , AMNM, AMNT,
AMLD, AMEL, AMMU, AMTA, AMQU, AMUQ, AMCQ, AMTQ, AMQD, AMDQ,
AMSQ,AMBQ, AMCP, AMCM, AMCZ , AMCA , AMGL

/AMGMMA/AGWB,AGZB, AGAB, AGXB,AGX3, AGPH, AGLU, AGNE,, AGNM, AGNT,
AGLD,AGEL,AGMU,AGTA,AGQU,AGUQ,AGCQ,AGTQ,AGQD,AGDQ,
AGSQ,AGBQ,AGCP,AGCM,AGCZ,AGCA, AGGL

/ LOOPO / LOOP

/ AMREG / MXREG

/ AMCNST/ PI, PI2, RAD, GEVPB, ALPHA

/ ENRGY / S,W,E,P,P1P2,FACT

/ TRNSF / YACO,EPSP,AP,XL0G

/ KCUTS / RMN,RMX,ETH

/ ACUTS / DELCUT,DLTCSG,DLTCSO,CSMX, CSMN
/ MASS1 / EM,WM

/ MASS2 / EM2,WM2

ION WW(5)
W / 200.D0O, 300.DO, 400.DO, 400.DO, 1000.DO /

EM
EM2

AMEL
EM*EM

WM AMWB
WM2 WM*xWM
tialize constants for kinematics.

W = total energy
W
E

Ww(5)
W/2.D0

Source list 3.6 KINIT for the process ete™ — WTW vy
continue to the next page

94 CHAPTER 3. GRACE SYSTEM

4 N
- energy cuts
ETH = WM
IF(ETH .LT. WM) ETH = WM
RMN = 1.D-3
RMX = E - 4.DOxWM2/W
c--———————-— angle cuts
CSMX = 1.D0
CSMN = - CSMX
DLTCSG = 0.DO
DLTCSO = 0.DO
ZETAC = 20.DO
DELCUT = COS((180.DO - ZETAC)*RAD)
C-————— energy variables
P = SQRT((E - EM)x(E + EM))
S = WxW
P1P2 = E#E + PxP
C————— factors for initial raditaion
C used in KINEM.
EPSP = EM2/(Px(E + P))
AP = EPSP + 1.DO
ZZZ = (1.DO - DLTCSG)/(DLTCSG + EPSP)
XLOG = LOG(1.DO + 2.DO*ZZZ)
YACO = XLOG/AP/P*%2
C-—————— factor including flux.
VREL = 2.DO
FLUX = VREL*S
FACT = GEVPB/(FLUX#*4.DO*(2.DO*PI)**4)
A e e
*-—— 3. Set MXREG : the maximum number of values which are returned
* by FUNC for one phase space point
MXREG = 2
A e
WRITE(6,100) W,EM
100 FORMAT(1H1,///’ Ww="’F8.2,3X,” EM=",G10.3,’ IN GEV’)
WRITE(6,’(’’/ RMN =’’,G10.3)’) RMN
WRITE(6,110) ETH,CSMX,CSMN
110 FORMAT(1H ,///’ (1) KINEMATICAL CUTS :’//
& 10X,° ETH = ’,G10.3,° GEV’/
& 10X,° CSMX = ’,F8.3 , /
& 10X,’ CSMN = ’,F8.3 , //
& 5X,’ WHERE ETH = THRESHOLD ENERGY FOR Q20 AND Q10’/
& bX,’ CSMN AND CSMX ARE ANGLE CUT FOR CS AND CSQ’
& /7)
RETURN
END
Source list 3.6 KINIT for the process ete™ — WTW ~v

3.3. SPECIFICATION OF THE KINEMATICS ROUTINES 95

3.3.2 Subroutine KINEM

In order to integrate the differential cross section, BASES samples a point in the integra-
tion volume and calls the function subprogram FUNC, which calculates the numerical
value of integrand at the sampling point and returns it as the value of function. For
calculating the differential cross section integration variables are to be translated into
four-momenta of external particles, which is done by the subprogram KINEM. The out-
look of KINEM is as follows:

SUBROUTINE KINEM(NEXTRN, XX, PE, PP, YACOB, NREG, IREG, JUMP)

IMPLICIT REAL*8

PARAMETER (MXDIM = 50)

INTEGER NEXTRN, NREG, IREG, JUMP
REAL*8 XX (MXDIM), PE(4,NEXTRN), PP(NEXTRN,NEXTRN), YACOB

The meanings of the arguments are as follows;

NEXTRN input Number of external particles

XX input Values of integration variables at the sampling point
PE output Table of four momenta of external particles
PP output Table of inner products of four momenta

YACOB output Normalization for converting the square of amplitude to the
cross section

NREG in/out The number of points in the phase space which correspond
to a point in the integration volume.
This value is set equal to one by FUNC for the first call at each
sampling point.

IREG input Counter of calling KINEM at the same sampling point. Func-
tion FUNC increments IREG for each call, and calls KINEM while
IREG < NREG.

JUMP output If the sampling point is out of kinematical boundary, JUMP is
set to be a non zero integer value.

An example of KINEM for the process ete™ — WTW ™+ is shown in the source list 3.7.
The specification for writing KINEM is as follows:

1) Initialization
At the beginning of routine, variable JUMP should be cleared for the safety.

2) Calculation of four vectors of external particles
From the integration variables XX (7), four vectors of external particles are derived
and are stored in the arrays PE(1~4,k), where PE(1,k), PE(2,k) and PE(3,k)
correspond to p,,p, and p,, respectively, and PE(4,k) is energy of the A-th par-
ticle.

96

3)

CHAPTER 3. GRACE SYSTEM

Jump flag JUMP

During calculation of four vector, when the sampling point XX (%) in the integra-
tion volume is out of the kinematical boundary, then the jump flag JUMP should
be set equal to non-zero integer value. Otherwise, it must be zero.

Inner products of four momenta

The inner products, taking all combinations of the external four momenta, are
calculated and stored in the array PP(l,m), where the numbers [and m are
corresponding to the labels of momenta PE(1~4,[) and PE(1~4,m), respectively.
Namely,

PP(I,m) = PE(4,l)*PE(4,m)— PE(1,l) xPE(1,m)

—PE(2,1) * PE(2,m) — PE(3,1) * PE(3,m).

Region flag NREG

When the kinematics is represented by a many valued function, namely, a sam-
pling point in the integration volume corresponds to several points in the mo-
mentum phase space, the number of multiplicity for this sampling point should
be given as the value of NREG. The structure of KINEM for this case is as follows:

IF(IREG .EQ. 1) THEN

The first call of KINEM for this sampling point.
If this point corresponds to several points in the phase space,
n points for example, then set NREG = n.

ELSE
The IREG-th call for the same sampling point

ENDIF

In the example of 3.7 there is no such a structure, because the kinematics is
constructed by a single valued function.

Notice

One should be careful not to loose the numerical accuracy by the cancellation
over many digits which may take place when the inner-product PP are calculated
from the four components of momenta. Use of invariants is recommended.

3.3.

SPECIFICATION OF THE KINEMATICS ROUTINES

97

-

*

aaQaQ

Q

eNoNoNeoNoNoNoNoNeNeoNe!

SUBROUTINE KINEM(NEXTRN, XX, PE, PP, YACOB, NREG, IREG, JUMP)

IMPLICIT REAL* 8(A-H,0-Z)

PARAMETER (MXDIM = 50)

INTEGER NEXTRN

REAL*8 XX (MXDIM)

REAL*8 PE(4,NEXTRN), PP(NEXTRN,NEXTRN)
REAL*8 YACOB

INTEGER NREG, IREG

INTEGER JUMP

COMMON /AMCNST/ PI, PI2, RAD, GEVPB, ALPHA
Masses and width of particles

COMMON /AMMASS/AMWB,AMZB, AMAB, AMXB, AMX3, AMPH, AMLU, AMNE , AMNM, AMNT,
& AMLD, AMEL , AMMU , AMTA , AMQU, AMUQ , AMCQ , AMTQ , AMQD , AMDQ,
& AMSQ,AMBQ, AMCP, AMCM, AMCZ , AMCA , AMGL
COMMON /AMGMMA/AGWB,AGZB,AGAB,AGXB,AGX3,AGPH,AGLU, AGNE, AGNM, AGNT,
& AGLD,AGEL,AGMU, AGTA,AGQU, AGUQ,AGCQ,AGTQ,AGQD, AGDQ,
& AGSQ,AGBQ,AGCP,AGCM, AGCZ ,AGCA , AGGL
COMMON / ENRGY / S,W,E,P,P1P2,FACT
COMMON / TRNSF / YACO,EPSP,AP,XLOG
COMMON / KCUTS / RMN,RMX,ETH
COMMON / ACUTS / DELCUT,DLTCSG,DLTCSO,CSMX,CSMN
COMMON / MASS1 / EM,WM
COMMON / MASS2 / EM2,WM2
JUMP = 0O
——— kinem-2
Kinematics for the process
e-(P1) + e+(P2) —-——-—> W-(Q1) + W+(Q2) + gamma(R)
(1) Frame of reference :
(a) Photon is along the z-axis.
(b) Initial e+ is in the x-z plane.
(2) Definition of variables :
(a) Polar angle of e+ is CSG.
(b) Photon energy is R.
(¢) Polar angle of W+ is CSO and
azimuthal angle is PHI.
(d) Energies of W- and W+ are Q10 and Q20.
(e) Angle between e+ and W+ is CSTH.
(3) Variable sequence : R --—> CSG ---> Q20 ---> PHI

Source list 3.7 An example of KINEM

continue to the next page

CHAPTER 3. GRACE SYSTEM

< a
non

SQD =
Q20MX =
Q20MN

(Wx(E-R- Q20) + R*Q20)/(Q2*R)

.LT.

.GT.

RMX/RMN
RMN*RR**XX (1)
LOG(RR)/R

EXP(2.DO*XLOG*(XX(2) - 0.5D0))
(ZZZ - 1.D0)/(ZZZ + 1.DO)*AP
SQRT((1.DO - CSG)*(1.DO + CSG))
APx(2.D0/(1.DO + ZZZ))

ZZZ*D2K

1.D0 - DLTCSO

(R*CSOMX)*x2
W-R

E-R

WR*x*2 - RCSO2
W*WR*ER

RCS02%((WHER)*x2 — WM2*U)
SQRT(D)
(V+sQ@D)/U
(V-sQqp)/U

E - Q20MX

E - Q20MN

Q20MX - ER

Q20MN - ER
B*CA/(CB*A)
LOG(RX)/(S*R)

A/CA*RX**XX (3)

R*ZZZ/(1.DO + ZZZ)

E - XXX

SQRT((Q20 - WM)*(Q20 + WM))

W-Q20 -R

SQRT((Q10 - WM)*(Q10 + WM))

ETH .0OR. Q10 .LT. ETH)

.GT. 1.DO - DLTCSO) GOTO 9999

SQRT((1.DO - CSO)*(1.DO + CSO))

2.DO*PI
COS(DPHI*XX(4))
SIN(DPHI*XX(4))

CS0*CSG + SNO*SNG*CSPHI

CSMX .OR. CSTH .LT. CSMN)

Source list 3.7 An example of KINEM

GOTO 9999

GOTO 9999

continue to the next page

~

3.3. SPECIFICATION OF THE KINEMATICS ROUTINES 99

('C ——— Cs01 h
Ccs01 = - (R + Q2%CS0)/Q1
C ___
CSQ = - (R*CSG + Q2*CSTH)/Q1
IF(CcsqQ .GT. CSMX .OR. C€SQ .LT. CSMN) GOTO 9999
COSDEL = (Q20%Q10 - Wx(Q20 + Q10)
& + ExW + WM2)/(Q2*Q1)
IF(COSDEL. GT. DELCUT) GOTO 9999
C——— invariants
D1 = RxP*Di1K
D2 = R*P*xD2K
EPSQ = WM2/(Q20 + Q2)
D3 = R*E/ERx(EPSQ + Q2%(1.DO + CSO))
D4 = Rx(EPSQ + Q2%(1.DO - CSO))
P1Q2 = E*Q20 + PxQ2%CSTH
P2Q2 = E*Q20 - PxQ2%CSTH
Q12 = Wx(E -R) - WM2
P1Q1 = EM2 + P1P2 - D1 - P1Q2
P2Q1 = EM2 + P1P2 - D2 - P2Q2

*

Table of four momenta.
PE(I, J) : I=1->X,2->Y, ... 4 -> energy, of J-th particle.

*

x 2 EL+ INITIAL LANTIP
PE(1,2) = Px*SNG
PE(2,2) = 0.0DO
PE(3,2) = P*CSG
PE(4,2) = E
*x 1: EL- INITIAL LPRTCL
PE(1,1) = -PE(1,2)
PE(2,1) = -PE(2,2)
PE(3,1) = -PE(3,2)
PE(4,1) = PE(4,2)
*x 3: WB+ FINAL LPRTCL
PE(1,3) = Q2*SNO*CSPHI
PE(2,3) = Q2*SNO*SNPHI
PE(3,3) = (Q2%CSO
PE(4,3) = Q20

* 5 AB FINAL LPRTCL
PE(1,5) = 0.0DO
PE(2,5) = 0.0DO
PE(3,5) = R
PE(4,5) = R
x 4: WB- FINAL LANTIP

PE(1,4) = PE(1,1)+PE(1,2)-PE(1,5)-PE(1,3)
PE(2,4) = PE(2,1)+PE(2,2)-PE(2,5)-PE(2,3)
PE(3,4) = PE(3,1)+PE(3,2)-PE(3,5)-PE(3,3)
PE(4,4) = Q10

Source list 3.7 An example of KINEM

continue to the next page

100 CHAPTER 3. GRACE SYSTEM
4 N
C—————— e momentum check : (mass)**2 of particles
ICHK = 0
IF(ICHK .NE. O) THEN
PRINT *, ’———————————————————————— ’
PRINT *, ’ EM*%2, WMx*2, ’, EM2, WM2
PRINT *, ’———————————————————————— ’
DO 10 J = 1,5
SQP = PE(1,J)**2+PE(2,J)**x2+PE(3,J) **2
10 PRINT *, ’ mass**2 = >, PE(4,J)**2 - SQP
ENDIF
C---- PP(I,J) = inner product between PE(*,I) and PE(*,J) -- invariants
PP(1,1) = EM2
PP(1,2) = P1P2
PP(1,3) = P1Q2
PP(1,4) = P1Q1
PP(1,5) = D1
PP(2,1) = P1P2
PP(2,2) = EM2
PP(2,3) = P2Q2
PP(2,4) = P2Q1
PP(2,5) = D2
PP(3,1) = P1Q2
PP(3,2) = P2Q2
PP(3,3) = WM2
PP(3,4) = Q1Q2
PP(3,5) = D4
PP(4,1) = P1Q1
PP(4,2) = P2Q1
PP(4,3) = Q1Q2
PP(4,4) = WM2
PP(4,5) = D3
PP(5,1) = D1
PP(5,2) = D2
PP(5,3) = D4
PP(5,4) = D3
PP(5,5) = 0.0DO
C——————— Jacobian
YACOB = FACT*DR* (YACO*D1*D2) * (DQ20*D3*D4) *DPHI/2.D0
RETURN
9999 JUMP = 1
RETURN
END
Source list 3.7 An example of KINEM
_ J

3.4. TEST OF GENERATED SOURCE CODE 101

3.4 Test of generated source code

The main program to check gauge invariance at one point in the integration volume is
produced by GRACE, shown in source list 3.8. Before running this program the full set
of program components for the integration, namely USERIN, KINIT, FUNC, and KINEM,
should be prepared. The program flow of this test is as follows:

1)

Initialization
Call USERIN to initialize the parameters for calculating the differential cross sec-
tion with FUNC.

Select a point
A point is selected in the integration volume. When one wants to test by several
different points, take the following structure:

PARAMETER (NPOINT = 5)
REAL*8 XX(NPOINT)
DATA XX / 0.1, 0.3, 0.5, 0.7, 0.9 /

CALL USERIN
DO 20 K = 1, NPOINT
(1) calculate the function with the unitary gauge
and print out the result
(2) calculate the function with the covariant gauge
and print out the result
20 CONTINUE

If the kinematics has an experimental cut which does not include the selected
point, one cannot make the check correctly. It is recommended to make the
check for various points in the integration volume.

Calculation in the unitary gauge
The differential cross section is calculated in the unitary gauge and the result is
printed out.

Calculation in the covariant gauge
The differential cross section is calculated in the covariant gauge and the result
is printed out.

The subprograms USERIN and FUNC call the histogram package. Since, however, this test
program calculates the integrand at a point in the integration volume, the histogram
has no meaning. Thus we use just dummy routines of the histogram package so that
we do not need to change the subprograms USERIN and FUNC at all.

102 CHAPTER 3. GRACE SYSTEM

~

* Test main program
IMPLICIT REALx*8(A-H,0-Z)

PARAMETER (MXDIM = 50)

COMMON / LOOPO / LOOP

COMMON / BASE1 / XL(MXDIM),XU(MXDIM),NDIM,NWILD,

& IG(MXDIM),NCALL

COMMON / BASE2 / ACC1,ACC2,ITMX1,ITMX2

COMMON / BASE3 / SI,SI2,SWGT,SCHI,SCALLS,ATACC,NSU,IT,WGT

DIMENSION X(MXDIM)
INCLUDE ’incli.f’
INCLUDE ’incl2.f’

WRITE(*,’ (10X,A//)’)’* 5120 E+ E- => W+ W- A TREE °
CALL USERIN
WGT = 1.DO

CT DO 20 MANY X’S

DO 10 I = 1, NDIM
X(I) = 0.45D0

10 CONTINUE
DO 40 I = 1, NGRAPH
JSELG(I) = 1

40 CONTINUE

WRITE(*,%) °X = 7, (X(I),I=1,NDIM)
WRITE(*,*) ’JSELG = ’, JSELG

* Unitary gauge

IGAUAB = 0O
IGAUWB = O
IGAUZB = 0O
IGAUGL = O

AGAUGE(0) = 1.0D20

WRITE(*,*) >IGAUAB = ’, IGAUAB, ’> AGAUGE = ’,AGAUGE(IGAUAB)
WRITE(*,*) *IGAUWB = ’, IGAUWB, ’> AGAUGE = ’,AGAUGE(IGAUWB)
WRITE(*,*) ’IGAUZB = ’, IGAUZB, ’ AGAUGE = ’ ,AGAUGE(IGAUZB)
WRITE(*,*) ’IGAUGL = ’, IGAUGL, ’ AGAUGE = ’ ,AGAUGE(IGAUGL)

AAA = FUNC(X)
WRITE(*,*) °> ANS1
WRITE(*,*) ’# GRAPHS

> ,AAA
> ,JGRAPH

Source list 3.8 Main program for gauge invariance check
continue to the next page

3.4. TEST OF GENERATED SOURCE CODE 103

4 N
* Covariant gauge

IGAUAB = 1

IGAUWB = 2

IGAUZB = 3

IGAUGL = 4

AGAUGE (IGAUAB) = 2.0DO

AGAUGE(IGAUWB) = 3.0DO

AGAUGE (IGAUZB) = 4.0DO

AGAUGE (IGAUGL) = 5.0D0

WRITE(*,*) ’X = 7, (X(I),I=1,NDIM)

WRITE(*,*) °JSELG = ’, JSELG

WRITE(*,*) ’IGAUAB = ’, IGAUAB, ’ AGAUGE = ’,AGAUGE (IGAUAB)
WRITE(*,*) ’IGAUWB = >, IGAUWB, ’> AGAUGE = ’,AGAUGE (IGAUWB)
WRITE(*,*) ’IGAUZB = ’, IGAUZB, ’> AGAUGE = ’,AGAUGE (IGAUZB)
WRITE(*,*) ’*IGAUGL = ’, IGAUGL, ’> AGAUGE = °’,AGAUGE (IGAUGL)

BBB = FUNC(X)
WRITE(*,*) ’ANS2 = ’,BBB
WRITE(*,*) ’# GRAPHS > ,JGRAPH

IF(BBB.NE.O) THEN
WRITE(*,*) ’ANS1/ANS2 - 1 = ’>, AAA/BBB
ELSE
WRITE(*,*) ’ANS1 = ’, AAA,’> ANS2 =’, BBB
ENDIF
CT 20 CONTINUE

|
[

STOP
END

Source list 3.8 Main program for gauge invariance check

In the output 3.1 the squared values of the amplitude at a point in the phase space
in different gauges, covariant gauge and unitary gauge are shown, which is the output
of the test program. The number of calculated Feynman graphs is different in these
gauges. The relative error is printed in the output. We usually require about 14 digits
agreement in double precision and about 32 digits in quadruple precision . In the
output one can also see contribution of each graph to the result.

'In quadruple precision, we have checked it on FACOM mainframe computer, Sun sparc workstation
and HITAC 3050 workstation

104 CHAPTER 3. GRACE SYSTEM

4 N

GRACE Ver. 1.0

* 5120 E+ E- => W+ W- A TREE
W = 1000.00 EM = .511E-03 IN GEV
RMN = .100E-02
(1) KINEMATICAL CUTS :
ETH = 80.0 GEV
CSMX = 1.000
CSMN = -1.000

WHERE ETH = THRESHOLD ENERGY FOR Q20 AND Q10
CSMN AND CSMX ARE ANGLE CUT FOR CS AND CSQ

X = .45 .45 .45 .45
JSEL¢ = 111111111111 1111111111111111
IGAUAB = O AGAUGE = 1.000000000000000E+20
IGAUWB = O AGAUGE = 1.000000000000000E+20
IGAUZB = O AGAUGE = 1.000000000000000E+20
IGAUGL = O AGAUGE = 1.000000000000000E+20
ANS1 = 1.34979414428365
GRAPHS = 18
X = .45 .45 .45 .45
JSELq = 1111111111111111111111111111
IGAUAB = 1 AGAUGE = 2.0
IGAUWB = 2 AGAUGE = 3.0
IGAUZB = 3 AGAUGE = 4.0
IGAUGL = 4 AGAUGE = 5.
ANS2 = 1.34979414428364
GRAPHS = 28
ANS1/ANS2 - 1 = 5.551115123125782E-15

INTEGRATED VALUE OF SQUARE OF EACH GRAPH

GRAPH ABSOLUTE RELATIVE
1: .23935707E-04 .17732857E-04
2 : .29254454E-04 .21673271E-04
3 : .30405158E-10 .22525774E-10
4 : .24923917E+02 .18464976E+02
5 : .30462254E+02 .22568074E+02
6 : .16871906E-06 .12499614E-06
7 : .33536397E+02 .24845564E+02
8 : .40988511E+02 .30366490E+02
9 : .14039649E+01 .10401326E+01

10 : .11486965E+01 .85101606E+00
11 : .34248206E+02 .25372910E+02
12 : .50292151E+03 .37259127E+03
13 : .37723272E+03 .27947426E+03
14 : .18116921E-07 .13421988E-07

Output 3.1 Result from gauge invariance check

continue to the next page

3.4. TEST OF GENERATED SOURCE CODE 105
4 15 : .30004545E+02 .22228978E+02 A
16 : .82173348E+02 .60878430E+02
17 : .42105481E+01 .31194002E+01
18 : .92509178E+03 .68535767E+03
19 : .14010416E-11 .10379669E-11
20 : .46106302E+03 .34158025E+03
21 : .37723271E+03 .27947426E+03
22 : .46034419E-09 .34104770E-09
23 : .10452751E-13 .7TT439594E-14
24 : .31070077E+02 .23018382E+02
25 : .10159998E-13 .75270725E-14
26 : .83905907E+02 .62162002E+02
27 : .28065832E+01 .20792676E+01
28 : .92394308E+03 .68450666E+03
TOTAL : .13497941E+01
L Output 3.1 Result from the gauge invariance check
/

106 CHAPTER 3. GRACE SYSTEM

3.5 Numerical integration

The GRACE system generates a set of FORTRAN subprograms necessary for the Monte
Carlo integration program package BASES, which consists of MAINBS, USERIN, FUNC and
USROUT. In this section a description of the integration program package BASES and
these subprograms generated by GRACE are given in the following order:

(1) Job parameters
In the initialization stage of integration, BASES reads these parameters to control
the program flow.

(2) Program structure of BASES
Relation among BASES and those subprograms generated by GRACE is described
in section 3.5.2.

3) Imitialization subprogram USERIN in section 3.5.3.

4) Function program of integrand FUNC in section 3.5.4.

5) Histogram package in 3.5.5.

6) Output from BASES in 3.5.6.

(3)
(4)
(5)
(6)

3.5.1 Job parameters

In order to control the integration job, there are four job parameters; loop parameters,
print flag, computing time limit and job flag. They are read at the beginning of a job
on a main frame computer, while they are to be given interactively from a terminal on
a uniz machine.

Job flag

The integration may take much computer time, for instance, if calculation of the
integrand needs a long computation. Then it might happen on a main frame
computer that a job is terminated before reaching the convergence condition of
integration due to the computing time limit of the job class and lose all infor-
mation in the worst case. To prevent this trouble, BASES watchs the remaining
computing time and when it is not enough for the next iteration, all temporary
information is saved on a disc file before the job is terminated. The meaning of
job flag is as follows;

JFLAG | meaning of job flag
0 First trial of the grid optimization step
1 First trial of the integration step
2 Continuation of the grid optimization step
3 Continuation of the integration step.

3.5. NUMERICAL INTEGRATION 107

At the beginning of a new integration job, JFLAG = 0 should be set. If the job is
terminated for lack of the computing time, the value of next job flag is given at
the end of the output.

If we ask better accuracy or more iterations than the present result, by setting
JFLAG = 3, further continuation of the integration step can be carried out even
once after the integration finishes by achieving a given accuracy of the estimate or
reaching a given number of iterations. In order to continue the integration step
further, the maximum iteration number ITMX2 and the expected accuracy ACC2
are to be set larger and smaller than the previous ones, respectively, in addition
to set JFLAG = 3.

To use this option, a file should be prepared beforehand, which we call the prob-
ability information file (see section 3.5.6). On a main frame computer this file
is allocated to the logical unit number 23 in the JCL (see section 4.2.5).

Since on a unix machine the computing time limit is not usually settled, a
job will run until the convergence condition is achieved. Therefore only JFLAG =
0 and 3 are meaningful on a uniz machine. However, if user wants to generate
four vectors by SPRING, the probability information file should be prepared in the
integration stage. For this case, it should be opened with the logical unit number
23 in the main program MAINBS.

Loop parameters
When we want to know the energy dependence of the cross section for instance,
we must integrate the differential cross section at several energy points. To make
this possible in a single job, the loop option is prepared. To use the loop option,

(a) insert statements like the following in subprogram USERIN;

COMMON /L00OPO/ LOOP
REAL*8 WCM(6)
DATA WCM / 40.0, 60.0, 70.0, 105.0, 150.0, 260.0/

IF((LoOP .LE. O) .OR. (LOOP .GT. 6)) STOP

In this example the CM energy W is selected from six energy points WCM(6)
by the number LOOP, which is counted by BASES.

(b) set the loop parameters. The loop parameters consist of the first loop number
LOOPF and last loop number LOOPL of the loop.

When the loop parameters are given as (LOOPF, LOOPL) = (4, 4), then only the
fourth energy point W = 105.0 is calculated. If (LOOPF, LOOPL) = (1, 3) are given,
three energy points are selected successively from W = 40.0 to 70.0.

108 CHAPTER 3. GRACE SYSTEM

Print flag
Since there are several kinds of outputs from BASES, selecting the output by the
print flag is useful. The outputs from BASES are the following:

a) final result of the integration.

b) convergence behavior for the grid optimization step,

(
(
(c) histograms and scatter plots for the grid optimization step,
(d) convergence behavior for the integration step, and

(

e) histograms and scatter plots for the integration step

A combination of the above outputs is printed according to the absolute value of
the print flag, which defined as follows:

INPRINT| | meaning of print flag
0 nothing but USROUT is called
1 only (a)
2 (a) and (e)
3 (d) and (e)
4 (b), (d) and (e)
=5 | (b), (¢), (d) and (e)

4

If the negative number “—NPRINT” is given as the print flag, the user output
routine USROUT is called at the end of the job as well as one of the above combi-
nations is printed according to NPRINT. The routine USROUT should be prepared
by user if the negative number or “0” is specified as the print flag.

Computing time limit
(This facility functions only for a main frame computer.) The computing time
limit is to be given as a job parameter in the unit of minute with real number,
while the internal time in BASES counts in the unit of second. When the remaining
computing time is not enough for the next iteration, the job is terminated (see
also the item of job flag).

3.5.2 Program structure of BASES

In figure 3.4 is shown the structure of program BASES, where MAINBS, USERIN, KINIT,
KINEM and FUNC are generated by GRACE and are to be finalized by user.

Program flow
The main program MAINBS calls the steering routine BSMAIN, which controls the
program flow of integration as follows:

-

3.5. NUMERICAL INTEGRATION 109
~

Fig. 3.4 Program structure of BASES
/

110 CHAPTER 3. GRACE SYSTEM

(A) Initialization

(1) At the beginning, the job parameters described in the previous section
are read from the unit number 5.
On a uniz system, these parameters are obtained from terminal by sub-
program BSUNIX.

(2) In subprogram BSUSRI, the parameters for BASES are set to the default
values and the subprogram USERIN is called to initialize them. If some
fundamental parameters, like number of dimensions of integral, are not
set in USERIN, the program will stop.

Specification of USERIN is given in section 3.5.3.

(3) If the job flag is not equal to “0”, then the current results are read from
the file by the subprogram BSREAD.

(4) If the job flag is equal to “0”, then the widths of all grids are set uniform.
(B) The grid optimization and integration steps
(1) For each hypercube, Ny, points are sampled in the following way;

(a) Sample a small region in the hypercube and sample a point in the
small region for each variable.

(b) Call function subprogram FUNC to calculate the differential cross
section at the sampled point.

and the estimate and variance of the integral are calculated.

(2) Sums of the estimates and variances over all hypercubes are taken to
calculate the estimate and error of the integral.

(3) If the integration converges, then go to step (C).
(4) If the integration does not yet converge, then;

For the grid optimization step,
call the subprogram BSGDEF to adjust each width of grids and then
go to step (B.1).

For the integration step,
go to step (B.1).
(C) Termination of task

(1) Print out the result.
(2) When this is the grid optimization step, set the job flag equal to “1”
and go to step (B.1).

(3) When this is the integration step, call USROUT, write the probability
information on a file and stop.

Main program MAINBS
In the program MAINBS, the name of function program should be given by an
external statement and subprogram BSMAIN is called, which is a steering routine

3.5. NUMERICAL INTEGRATION 111

of the integration. Furthermore, to secure the histogram buffer the common
/PLOTB/ is declared in this main. An example of MAINBS for the uniz system is
given in the source list 3.9.

4 N
EXTERNAL FUNC

DOUBLE PRECISION FUNC

INCLUDE ’inclh.f’
COMMON /PLOTB/ IBUF(281#NHIST + 2527*NSCAT + 281)

open(23, file =’bases.data’,status=’unknown’,form=’unformatted’)
CALL BSMAIN(FUNC)
close(23)

STOP
END

Source list 3.9 An Example of MAINBS
_ J

The file inclh.f is referred by the INCLUDE statement, where the number of
histograms and that of scatter plots are given by the PARAMETER statement as
follows:

PARAMETER (NHIST = 5, NSCAT = 6)

The reason why we use the include file to define the numbers of histograms
and scatter plots is that it is much better to change them in a include file than
to change the all subprograms including them since these numbers are used in
several subprograms.

A binary file bases.data is created for the probability information as mentioned
in previous section.

If the name of function program differs from FUNC, it should be declared with the
real name instead of FUNC.

3.5.3 Initialization subprogram USERIN

At the beginning of the integration job, the subroutine USERIN is called to initialize
the parameters both for the integration and calculating the integrand. The template
of USERIN is generated by GRACE and is to be finalized by the user. The functions of
USERIN are as follows:

(1) Initialization of the amplitude calculation
This is done by calling subprograms SETMAS and AMPARM,which are described in
section 3.2.1.

112 CHAPTER 3. GRACE SYSTEM

(2) Initialization of kinematics
This is done by calling the subprogram KINIT. KINIT must be prepared by the
user, specification of which is given in section 3.3.

(3) Initialization of the integration parameters
The parameters for integration are summarized in the commons /BASE1/ and
/BASE2/, where all real variables are to be given by the double precision.

PARAMETER (MXDIM = 50)
COMMON /BASE1/ XL(MXDIM), XU(MXDIM), NDIM ,NWILD, IG(MXDIM), NCALL

XL(:) (¢ = 1, NDIM) The lower bound of i-th variable.

XU(z) (¢ = 1, NDIM) The upper bound of i-th variable.

NDIM The dimension of the integral.

NWILD The number of wild variables (at least one and at
most 15).

IG(i) (¢ = 1, NDIM) The flag for the grid optimization. If IG(i) = 1(0),
the grid for the i-th variable is (not) optimized.
If the integrand is approximately constant for a
variable, it may give better convergence than vary-
ing widths to set the grid uniform for this variable.
The default flag is “1” (optimization).

NCALL The number of sampling points per iteration.

The number of real sampling points differs from a given number NCALL, which is
automatically determined by the following algorithm. It is noticed that the order
of variables XU(7), XL(i) and IG(:) (¢ = 1 , NDIM), should start with the wild

variables.
N — 000 NP — 5 000
call — 2 call —)

Nyitd s Neube Ng Nc(zlelal) Nuyitd N, Neube Ng Nc(zlelal)

1 25 25 50 1,000 1 25 25 50 5,000

2 22 484 44 968 2 25 625 50 5,000

3 7 343 49 686 3 13 2,197 39 4,394

4 4 256 48 768 4 7 2,401 49 4,802

5 3 243 48 972 5 4 1,024 48 4,096

6 2 64 50 960 6 3 729 48 4,374

7 2 128 50 896 7 3 2,187 48 4,374

8 2 256 50 768 8 2 256 50 4,864

9 1 1 50 1,000 9 2 512 50 4,608

10 1 1 50 1,000 10 2 1024 50 4,096

N — 10,000 N@vem) — 90,000

Nyitd N, Neube Ng Nc(zlelal) Nuyitd N, Neube Ng c(zlelal)

1 25 25 50 10,000 1 25 25 50 20,000

2 25 625 50 10,000 2 25 625 50 20,000

3 17 4,913 34 9,826 3 21 9,261 42 18,522

4 8 4,096 48 9,182 4 10 10,000 50 20,000

5 5 3,125 50 9,375 5 6 7,776 48 15,552

6 4 4,096 48 8,192 6 4 4,096 48 16,384

7 3 2,187 48 8,448 7 3 2,187 48 19,693

8 2 256 50 9,984 8 3 6,561 48 19,683

9 2 512 50 9,728 9 2 512 50 19,968

10 2 1,024 50 9,216 10 2 1,024 50 19,456

3.5. NUMERICAL INTEGRATION 113

The number of subregions per variable N, is determined by the maximum number
which satisfies the two inequalities:

Nca o i
N, = (T”)qud <25 and NN < 32768.

The number of hypercubes is given by Ny = Nst“d , then the number of
sampling points per hypercube is Ny.iar = Neair/Newve- Since the number Nyq

is an integer, the calculated number Nc‘;"f,"’) = Nypiat X Newpe may differ from the

. (given)
given number N,
(rea

call

The table gives the numbers of real sampling points ! depending on the

N(given)

vall and the numbers of wild variables

given numbers of sampling points
Nyita-

(: COMMON /BASE2/ ACC1, ACC2, ITMX1, ITMX2 :)

Acct The accuracy (%) for the grid optimization step (default
0.2 %).

Acc2 The accuracy (%) for the integration step (default 0.05 %).

ITMX1 The maximum iteration number of the grid optimization step
(default 15).

ITMX2 The maximum iteration number of the integration step (de-
fault 100).

Numbers of Histograms and Scatter plots
In order to let the system know the numbers of histograms and scatter plots, the
subroutine BHINIT is to be called somewhere in USERIN like;

CALL BHINIT(NHIST, NSCAT)

where NHIST (NSCAT) is the number of histograms (scatter plots) and one his-
togram (scatter plot) requires 281 (2527) 32-bit words. An additional storage of
281 words is kept for a histogram of the numbers of trials in SPRING. It is noted
that the buffer for the histograms and scatter plots should be secured in the main
program MAINBS.

Initialization of Histograms and Scatter plots
To make a histogram and a scatter plot, the following initialization routines are
to be called in the USERIN;

CALL XHINIT(ID#,
lower_limit, upper_limit, # of bins, ’ Title ’),
and

114 CHAPTER 3. GRACE SYSTEM

CALL DHINIT(ID#,
x_lower_limit, x_upper_limit, # of x bins,
y_lower_limit, y_upper_limit, # of y bins,
> Title ’),

respectively. The ID and bin numbers are to be given by an integer value, and
the lower and upper limits are to be given by the double precision values. The
maximum bin number both for histograms and scatter plots is 50, which is defined
by the paper size. When too many histograms or scatter plots are initialized, the
first NHIST-1 histograms and NSCAT scatter plots are initialized and the others
are neglected.

An example for the process ete™ — WTW is shown in the source list 3.10. In this
example, the histograms for all integration variables and scatter plots for all combina-
tions of integration variables are demanded, which is a standard set of histograms and
scatter plots demanded in the generated USERIN by GRACE. For this case, the param-
eters NHIST and NSCAT are to be set equal to at least NDIM and NDIM*(NDIM-1)/2 in
the include file inclh.f, respectively.

4 N
SUBROUTINE USERIN

IMPLICIT REAL*8(A-H,0-Z)

PARAMETER (MXDIM = 50)

COMMON / LOOPO / LDOP

COMMON / BASE1 / XL(MXDIM),XU(MXDIM),NDIM,NWILD,

& IG(MXDIM) ,NCALL

COMMON / BASE2 / ACC1,ACC2,ITMX1,ITMX2

COMMON / BASE3 / SI,SI2,SWGT,SCHI,SCALLS,ATACC,NSU,IT,WGT

* Table of amplitudes

PARAMETER (NGRAPH = 28, NEXTRN = 5, LAG = 72)
PARAMETER (NGRPSQ = NGRAPH*NGRAPH)

COMMON /AMSLCT/JSELG (NGRAPH), JGRAPH, JHIGGS, JWEAKB
COMPLEX*16 AG, APROP

COMMON /AMGRPH/AG(0:LAG-1,NGRAPH), APROP(NGRAPH),
& ANCP (NGRAPH) , ANSP(O:NGRAPH),
& CF (NGRAPH,NGRAPH) , IGRAPH(NGRAPH)

INCLUDE ’inclh.f’
CHARACTER XSTR*14, DSTR*24

Parameters for Amplitude calculation

Source list 3.10 An example of USERIN

continue to the next page

3.5. NUMERICAL INTEGRATION

115

-

% ============= Mass and Width
CALL SETMAS
* === s==smm======
* ============= Coupling constants
CALL AMPARM
* === ====
*
* Initialization of Kinematics
*
* o= ==m=====
CALL KINIT
* ============
*
* Parameters for BASES
*
*--- 1. Dimension of integration.
NDIM = 4
NWILD = 4
*--- 2. Region of integration.
DO 10 I = 1, NDIM
XL(I) = 0.DO
XU(I) = 1.DO
IG(I) =1
10 CONTINUE
*——— 3. Numbers of iterations and sampling points / iteration
and expected accuracies
ITMX1 = 5
ITMX2 = 5
ACC1 = 0.2D0
ACC2 = 0.01DO
NCALL = 5000
Initialization of Histograms and scatter plots
* Change NHIST = NDIM, NSCAT = NDIM*(NDIM-1)/2
* in the parameter statement (in INCLH)

CALL BHINIT(NHIST,NSCAT)

Source list 3.10 An example of USERIN

continue to the next page

116 CHAPTER 3. GRACE SYSTEM

4 N
NX = 50

ND = 50

DO 100 I = 1, NDIM
WRITE(XSTR, 110) I

110 FORMAT(’X(’,I2,’) Spectrum’)
CALL XHINIT(I, XL(I), XU(I), NX, XSTR)
100 CONTINUE
K=20

DO 200 I = 1, NDIM - 1
DO 200 J = I + 1, NDIM
WRITE(DSTR, 210) I, J

210 FORMAT(’°X(’,I2,’)-X(’,I2,’) Distribution’)

K=K+ 1

CALL DHINIT(K, XL(I),XUu(I),ND, XL(J),XU(J),ND,DSTR)
200 CONTINUE

* Initialization of summary table
DO 300 IGR = O, NGRAPH
ANSP(IGR) = 0.0DO
300 CONTINUE

FKCALL = O
NKCALL = O

RETURN

END

Source list 3.10 An example of USERIN
- J

3.5.4 Function program of the integrand

The function program calculates the value of integrand at the sampling point fed by
BASES.

A set of numerical values of the integration variables at a sampling point is passed
through the argument of function program. A typical structure of the function program
is given in the source list 3.11 where the dimension of integration is five. A recipe for
writing the function program is as follows:

1) Calculate the kinematical variables, by which the differential cross section is
described, from the integration variables, X(i) for # = 1, NDIM.

2) If, in the last step, a sampling point is found to be outside of the kinematical
boundary, set the value of function equal to zero and return.

3.5. NUMERICAL INTEGRATION 117

3) If the point is inside the kinematical boundary, calculate the numerical value of
the differential cross section and set the value of function equal to the calculated
value.

4) If a histogram is required, call subprogram XHFILL once.

5) If a scatter plot is required, call subprogram DHFILL once.

DOUBLE PRECISION FUNCTION FUNC(X)
DOUBLE PRECISION X(5)
FUNC = 0.0

. Calculation of the kinematics ...
IF(the point is outside the kinematical boundary) RETURN

FUNC = is calculated from X(i) for i = 1, 5.

CALL XHFILL(ID, V, FUNC)
CALL DHFILL(ID, VX, VY, FUNC)

RETURN
END

Source list 3.11 Typical structure of FUNC
o _/

An example of FUNC for the process ete™ — WTW ~+ is given in the source list 3.12.
The structure of this example is as follows:

1) The array XX stores the values of integration variables.

2) Total number of external particles NEXTRN and XX are transferred to subprogram
KINEM. The tables of momenta P and inner-products of them PP, and normaliza-
tion factor YACOB are received from KINEM.

In the case of QCD calculation, the running coupling constant can be included
in YACOB, which should be defined by the user.

3) P and PP are copied to the common variables PExxxx and PPROD, respectively,
and they are used in the amplitude calculation.

4) Subprogram AMPTBL calculates the amplitudes and makes the tables of them.
5) Summation over the spin states by calling the subprogram AMPSUM.

6) Fill the histograms and scatter pots by the subprograms XHFILL and DHFILL,
respectively.

118

7)

CHAPTER 3. GRACE SYSTEM

The variable JUMP

If the sampling point is out of the kinematical boundary, JUMP is set to a non zero
integer in KINEM. For this case, the amplitude does not need to be calculated.

The variables NREG and IREG

When the kinematics contains a multi-valued function, i.e. one sampling point
in the integration volume corresponds to several points in the phase space, the
variables NREG and IREG take the total number of multiplicity and the current
number of multiplicity, respectively.

In the subprogram FUNC, the variables NREG and IREG are set to “1” at the
beginning and subroutine KINEM is called. A typical structure of subroutine
KINEM for multi-valued function is as following:

SUBROUTINE KINEM(NEXTERN, XX, P, PP, YACOB, NREG, IREG, JUMP)

IF(IREG.EQ.1) THEN
NREG = (the number of multiplicity at the sampling point XX)
(Calculate four momenta P for the first calculation)
(Calculate inner products of four momenta PP)
(Calculate Jacobian YACOB for the first calculation)

ELSE IF(IREG.EQ.2) THEN
(Calculate four momenta P for the second calculation)
(Calculate inner products of four momenta PP)
(Calculate Jacobian YACOB for the first calculation)

ELSE IF ...
ENDIF

RETURN
END

KINEM calculates the total number of multiplicity at the sampling point and store
it in NREG. If it is greater than “1”, then the first calculation of four momenta
is performed. From the second calculation, IREG is incremented with keeping
NREG unchanged and momenta are returned by calling KINEM. The same step is
repeated until IREG reaches NREG. The value of MXREG is defined in the subroutine
KINIT and is used to protect unexpected repeat. It is clear that NREG is the total
number of multiplicity at a sampling point given by KINEM and IREG plays the
role of counter which shows the number of KINEM calls.

When one wants to demand some experimental cut on the phase space, one can
define it either in KINEM or in a new subroutine. The new subroutine should be
called just after calling KINEM.

3.5. NUMERICAL INTEGRATION

119

If the sampling point falls into the region excluded by the experimental cut, then

GO TO 1000

is executed.

FUNCTION FUNC(X)
IMPLICIT REAL*8(A-H,0-Z)
PARAMETER (MXDIM = 50)
REAL*8 FUNC

REAL*8 X(MXDIM)

COMMON / LOOPO / LOOP
COMMON / BASE1 / XL(MXDIM),XU(MXDIM),NDIM,NWILD,
& IG(MXDIM) ,NCALL
COMMON / BASE2 / ACC1,ACC2,ITMX1,ITMX2
COMMON / BASE3 / SI,SI2,SWGT,SCHI,SCALLS,ATACC,NSU,IT,WGT
INCLUDE ’incli.f’
COMMON /AMREG /MXREG
COMMON /AMSPIN/JHS(NEXTRN), JHE(NEXTRN), ASPIN
REAL*8 ANSO, ANS
* P : Table of four momenta
* PP : Table of inner products
REAL*8 XX (MXDIM) ,P(4,NEXTRN) ,PP (NEXTRN,NEXTRN)
COMMON /SP4VEC/ VEC(4,NEXTRN)

Initialization

ANSUM = 0.0DO
DO 5 I =1, NDIM
XX(I) = X(I)
5 CONTINUE

NREG =1
DFT

1
o
o
o

Kinematics

DO 1000 IREG = 1 , MXREG
IF(IREG .GT. NREG) GO TO 1000

CALL KINEM(NEXTRN, XX, P, PP, YACOB,NREG,IREG,JUMP)

Source list 3.12 An example of FUNC

continue to the next page

CHAPTER 3. GRACE SYSTEM

IF(IREG .EQ. 1) THEN
DFT = 0.DO
DO 180 K = 1, NEXTRN
DO 180 J =1, 4
VEC(J,K) = 0.DO
180 CONTINUE
ENDIF
IF(JUMP .NE. O) GO TO 1000

CALL USRCUT (JUMP)
IF(JUMP .NE. 0) GOTO 1000

1: EL- INITIAL LPRTCL

PE0001(I) = P(I, 1)

2: EL+ INITIAL LANTIP
PE0002(I) = P(I, 2)

3: WB+ FINAL LPRTCL
PE0003(I) = P(I, 3)

4: WB- FINAL LANTIP
PE0004(I) = P(I, 4)

5: AB FINAL LPRTCL
PE0005(I) = P(I, 5)

20 CONTINUE

DO 30 J 1, NEXTRN
DO 30 I 1, NEXTRN
PPROD(I, J) = PP(I, J)
30 CONTINUE

Amplitude calculation

Source list 3.12 An example of FUNC

continue to the next page

3.5. NUMERICAL INTEGRATION

121

-

CALL AMPSUM(ANSO)

FKNORM = YACOB*ASPIN
ANS = ANSO*FKNORM
ANSUM = ANSUM + ANS

IF(IREG .EQ. 1) THEN
DFT = ANS
DO 420 K 1, NEXTRN
DO 420 J =1, 4
VEC(J,K) = P(J,K)
420 CONTINUE
ENDIF

Fill Histograms and Scatter plots

DO 40 I = 1, NDIM

40 CONTINUE
K=20
DO 50 I = 1, NDIM-1
DO 50 J = I+1, NDIM
K =K+ 1

50 CONTINUE

CALL XHFILL(I, XX(I), ANS)

CALL DHFILL(K, XX(I), XX(J), ANS)

Update summary table

ANSP(0) = ANSP(0) + WGT*ANS
DO 60 IGR = 1, JGRAPH

60 CONTINUE
NKCALL = NKCALL + 1
IF(NKCALL .GT. 10000) THEN
NKCALL = NKCALL - 10000
FKCALL = FKCALL + 10000
ENDIF

1000 CONTINUE

FUNC = ANSUM

ANSP (IGR)=ANSP(IGR) + WGT*YACOB*ASPIN*ANCP (IGR)

Source list 3.12 An example of FUNC

continue to the next page

122 CHAPTER 3. GRACE SYSTEM

* *
av)
(=]
ct
ot
(=2
]
H
M.
=]
o
'—l
KN
]
]
a
ot
[o]
H
]
H.
=]
ot
o
ot
[=n
]
)
H
H
o
<
0
<3
=1
Q
~
N

IF(FUNC .GT. 0.DO) THEN
IF(DFT/FUNC .LT. DRN(DUM)) THEN
DO 850 K = 1, NEXTRN
DO 850 J 1, 4
VEC(J,K) = P(J,K)
850 CONTINUE
ENDIF
ENDIF

* X K K K X X *

RETURN
END

Source list 3.12 An example of FUNC

3.5.5 Histogram package

The program package BASES/SPRING has its own histogram package, whose character-
istics are as follows;

1) The buffer size of histograms and scatter plots is to be defined in the main
program MAINBS.

INCLUDE ’inclh.f’
COMMON /PLOTB/ IBUF(281*NHIST + 2527*NSCAT + 281)

The parameters NHIST and NSCAT are defined in the include file inclh.f. By
changing these numbers one can make histograms and scatter plots up to 50 for
each. The required buffer sizes for a histogram and a scatter plot are 281 and
2527 32-bit words, respectively.

2) Somewhere in USERIN, there should be a statement
CALL BHINIT(NHIST, NSCAT)

in order to let the system know the numbers of histograms and scatter plots.

3) To initialize the histograms and scatter plots, the following routines are to be
called in USERIN.

CALL XHINIT(ID#,
lower_limit, upper_limit, # of bins, ’> Title ’),

3.5. NUMERICAL INTEGRATION 123

4)

5)

6)

and
CALL DHINIT(ID#,
x_lower_limit, x_upper_limit, # of x bins,
y_lower_limit, y_upper_limit, # of y bins,
? Title ?),

respectively.

To fill the histograms or the scatter plots on a scalar computer the following
filling routines are called in the function FUNC:

CALL XHFILL(ID#, V, FUNC) for each histogram
CALL DHFILL(ID#, VX, VY, FUNC) for each scatter plot

The outputs of histograms and scatter plots can display even a negative function
as well as the positive definite function.

The maximum number of bins both for histograms and scatter plots is 50.

3.5.6 Output from BASES

As described in section 3.5.1, there are several kinds of outputs from BASES, and we can
select a combination of outputs by the print flag. The outputs consist of the following
items.

1)

Job parameter

At the beginning of a job and just after reading the job parameters, their values
are printed out as well as the number of nodes, which consist of the start and
final loop counts, the print flag, the job input flag and the computing time limit
as shown in the output 3.2.

Parameters for BASES

After returning from USERIN, the parameters given there are printed out, some of
which are numbers of the integration variables, the wild variable and the sampling
points per iteration, Ngim, Nwig and Nc(g,zf °") From these numbers, the number

of the small-regions per variable Ny, that of the sub-regions per variable IV,
that of real sampling points per iteration N and that of hypercubes Nous

call
are calculated and printed. Further, for each integration variable, the lower and
upper limits, XL (¢) and XU(%), the grid optimization flag IG(2), and the kind of
variable (i.e. wild or not) are printed. And finally the maximum iteration number
and the expected accuracy both for the grid optimization and the integration

steps are printed. An example of this output is given in the output 3.2.

124 CHAPTER 3. GRACE SYSTEM

4 M

Date: 93/ 1/ 9 14:02
ok ok ok ook ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok kok ok ok ok ok ok kK ok

BBBBBB AA AA SSSSS EEEEEE SSSSS

* *
* BBBBBB AAA SSSSS EEEEEE SSSSS *
* BB BB AA AA SS SS EE SS SS *
* BB BB AA AA SS EE SS *
* BBBBBB AAAAAAA SSSSS EEEEEE SSSSS *
* BB BB AA AA SS EE SS *
* BB BB AA AA SS SS EE SS SS *
* *
* *
* *

BASES Version 5.0
kKoK ok o o o KKK oK ok ok o o KKK ok ok o o o K K K ok ok ok o o K KK ok ok o o K K K ok ok ok o

<< Parameters for this JOB >>

Current Loop Count
Maximum Loop Count
Print Flag

JOB Input Flag
Number of Nodes
CPU Time Limit = No limit

n
= OB R

<< Parameters for BASES >>

(1) Dimensions of integration etc.

of dimensions : Ndim = 4 (50 at max.)

of Wilds : Nwild = 4 (15 at max.)

of sample points : Ncall = 4802 (real) 5000 (given)
of small regions : Ng = 49 / variable

of subregions : Ns = 7 / variable

of Hypercubes : Ncube = 2401

(2) About the integration variables

—————— Bt et e
i XL(1) XU(i) IG(i) Wild
—————— Bt et e
1 0.000000E+00 1.000000E+00 1 yes
2 0.000000E+00 1.000000E+00 1 yes
3 0.000000E+00 1.000000E+00 1 yes
4 0.000000E+00 1.000000E+00 1 yes
—————— B et B et

(3) Parameters for the grid optimization step
Max.# of iterations: ITMX1 = 5
Expected accuracy : Accl = .2000 %

(4) Parameters for the integration step
Max.# of iterations: ITMX2 = 5
Expected accuracy : Acc2 = .0100 %

Output 3.2 General information of the integration

o J

3) Convergency behavior

According to the print flag the two kinds of convergency behaviors can be ob-
tained, one is for the grid optimization step and another is for the integration
step. The print format consists of the result of each iteration and the cumulative
result and the computing time used.

3.5. NUMERICAL INTEGRATION 125

In the result of each iteration, the sampling efficiency (the percentage of the
points inside of the kinematical boundary), the ratio of the numbers of the
negative valued sampling points to the total number of sampling points in unit
of percent, the estimate of integral of the iteration and the estimated accuracy
in unit of percent are shown.

In the cumulative result, the cumulative estimates of integral and error are listed
up in addition to the accuracy in the unit of percent. The computing time in this
table is measured from the beginning of the grid optimization step till the end of
the current iteration, which does not contain the time of overhead but that used
for estimating integral.

In the convergency behavior for the grid optimization step, it should be checked
that the accuracy for each iteration does decrease iteration by iteration and con-
verge to a stable value. If not the case, it is recommended to increase the number
of sampling points N.q; and try again. When the increment of number of sam-
pling points does not help to improve the behavior, the current choice of the
integration variables may not be suitable for the behavior of integrand. Exam-
ples of convergency behavior both for the grid optimization and integration steps
are given in the outputs 3.3 and 3.4, respectively.

Date: 93/ 1/ 9 14:02
Convergency Behavior for the Grid Optimization Step
<- Result of each iteration -> <- Cumulative Result -> < CPU time >
IT Eff R_Neg Estimate Acc % Estimate(+- Error)order Acc % (H: M: Sec)

1 94 .00 3.298E+00 3.406 3.298227(+- .112323)E 00 3.406 0: 1: 9.79
2 96 .00 3.500E+00 1.670 3.457213(+- .051841)E 00 1.500 0: 2:20.89
3 97 .00 3.417E+00 1.045 3.429967(+- .029414)E 00 .868 0: 3:32.87
4 97 .00 3.400E+00 1.031 3.417499(+- .022535)E 00 .6569 0: 4:45.09
5 97 .00 3.384E+00 .911 3.405825(+- .018189)E 00 .534 0: 5:57.28

Output 3.3 Convergency behavior for the grid optimization step

126

CHAPTER 3. GRACE SYSTEM

Date: 93/ 1/ 9 14:02
Convergency Behavior for the Integration Step
<- Result of each iteration -> <- Cumulative Result -> < CPU time >
IT Eff R_Neg Estimate Acc % Estimate(+- Error)order Acc % (H: M: Sec)
1 97 .00 3.449E+00 .987 3.449476(+- .034036)E 00 .987 0
2 97 .00 3.370E+00 .944 3.407093(+- .023241)E 00 .682 0
3 97 .00 3.391E+00 .956 3.401467(+- .018889)E 00 .555 0: 9:33.93
4 97 .00 3.378E+00 .966 3.395686(+- .016350)E 00 .481 0:10:45.54
5 97 .00 3.383E+00 .932 3.392969(+- .014514)E 00 .428 0:11:58.49

Output 3.4 Convergency behavior for the integration step

The accuracy of each iteration must be stable in the integration step. When the
integration variables does not suit for the integrand, it fluctuates iteration by
iteration and may jump suddenly to a big value in the worst case.

In the interactive mode the convergency behavior is printed iteration by iteration,
while it is printed only for the final 50 iterations in the batch mode. This mode
is to be selected at the installation time by setting the flag “INTV” in the routine
BSMATIN.

Histograms and scatter plots

If histograms and scatter plots are initialized in USERIN and filled in FUNC, their
results are printed at each end of the grid optimization step and the integration
step according to the print flag. In the output 3.5 we show only the histogram
ID = 3 for saving the space of this manual.

The first and the last bins of histogram represent values of the underflow and the
overflow bins, respectively. The first column shows the lower edge value of each
histogram bin. The second column represents the estimated differential value and
error after the characters “+-”, both of which are to be multiplied by a factor
“E xx” shown as order. On the right hand side of these columns a histogram
of the differential values is drawn both in the linear scale with “x” and in the
logarithmic scale with “0”. If negative values exist in some bins only the linear
scale histogram is shown.

The scatter plot represents only the relative height of the function. The height

of the function value is described by ten characters; 1, 2, 3, ..., 8, 9 and *, while

the depth (for the negative values) is displayed by ten characters; a, b, c, d, ...,

h, i and #. The point which has a negative value but larger than the value of the

level “a” is indicated by “~”. On the other hand, the point describing a positive

value but less than the level “1” is given either by “+” (if a negative value exists
“w o o”

somewhere) or by “.” (if only the positive values exist). In the output 3.6 an
example of scatter plot is shown.

3.5. NUMERICAL INTEGRATION 127

4)
Histogram (ID = 3) for X(3) SPECTRUM
Linear Scale indicated by "#*"

X d(Sigma)/dx 0.0E+00 8.3E+00 1.7E+01 2.5E+01
o R o e B it Fom - +
I E 0I .000 E 0I I
I .000 I 2.595+= .051 E 1Txskskkakkskoskokakkskokskkkokokkkskokkkkkkkkkkkkkkx*xxkx000000000I
I .020 I 8.402+- .279 E OI***¥k¥**x***+00000000000000000000000000 I
I .040 I 5.954+- .265 E OI****x*****x+x00000000000000000000000000 I
I .060 I 4.817+- .229 E OI****x**+00000000000000000000000000 I
I .080 I 3.415+- .171 E OI*****x0000000000000000000000000 I
I .100 I 3.698+- .167 E OI****xx00000000000000000000000000 I
I .120 I 3.053+- .148 E OI****x0000000000000000000000000 I
I .140 I 2.898+- .154 E O0Ix*****0000000000000000000000000 I
I .160 I 2.443+- .160 E O0I****000000000000000000000000 I
I .180 I 2.917+- .155 E OI*****0000000000000000000000000 I
I .200 I 2.183+- .134 E O0I****00000000000000000000000 I
I .220 I 1.874+- .127 E 0I***00000000000000000000000 I
I .240 I 2.161+- .129 E O0I*x**00000000000000000000000 I
I .260 I 1.924+- .123 E 0I***00000000000000000000000 I
I .280 I 1.589+- .110 E 0I***0000000000000000000000 I
I .300 I 1.543+- .100 E 0I***000000000000000000000 I
I .320 I 1.387+- .107 E 0I**x00000000000000000000 I
I .340 I 1.316+- .086 E 0I**000000000000000000000 I
I .360 I 1.239+- .091 E 0I**00000000000000000000 I
I .380 I 1.282+- .091 E 0I**000000000000000000000 I
I .400 I 1.021+- .069 E 0I**0000000000000000000 I
I .420 I 9.757+- .814 E -1I*%000000000000000000 I
I .440 I 9.046+- .458 E -1I%*000000000000000000 I
I .460 I 8.947+- .466 E -1I%*x000000000000000000 I
I .480 I 9.287+- .679 E -1I**000000000000000000 I
I .500 I 8.258+- .790 E -1I**00000000000000000 I
I .520 I 9.083+- .589 E -1I**000000000000000000 I
I .540 I 9.549+- .668 E -1I**000000000000000000 I
I .560 I 9.718+- .739 E -1I**000000000000000000 I
I .580 I 9.076+- .840 E -1I**000000000000000000 I
I .600 I 1.193+- .088 E 0I**00000000000000000000 I
I .620 I 1.401+- .093 E 0I**x00000000000000000000 I
I .640 I 1.428+- .119 E 0I***x000000000000000000000 I
I .660 I 1.097+- .101 E 0I**0000000000000000000 I
I .680 I 1.947+- .123 E 0I***00000000000000000000000 I
I .700 I 1.979+- .126 E 0I***00000000000000000000000 I
I .720 I 2.099+- .122 E O0I****00000000000000000000000 I
I .740 I 2.214+- .138 E O0I*x**00000000000000000000000 I
I .760 I 1.784+- .125 E 0I***00000000000000000000000 I
I .780 I 2.376+- .141 E O0I*x*+*000000000000000000000000 I
I .800 I 2.483+- .144 E O0I****000000000000000000000000 I
I .820 I 2.566+- .149 E O0Ix****0000000000000000000000000 I
I .840 I 2.883+- .152 E O0OIx*****0000000000000000000000000 I
I .860 I 2.803+- .150 E OI*****000000000000000000000000 I
I .880 I 3.448+- .175 E OI*****x0000000000000000000000000 I
I .900 I 3.906+- .176 E OI****x*x00000000000000000000000000 I
I .920 I 4.146+- .196 E OIx*****x*x00000000000000000000000000 I
I .940 I 5.760+- .247 E OI********x000000000000000000000000000 I
I .960 I 8.741+- .291 E OIxk¥*kxkx***%x*x0000000000000000000000000 I
I .980 I 2.612+- .052 E 1Ikkkskkkkiokikokkokkokiokkkkiokiokkkkkkkkkkkkkxkx0000000001
I E 0I .000 E 0I
o o oo o o +

x d(Sigma)/dx 1.0E-01 1.0E+00 1.0E+01

Logarithmic Scale indicated by "0"
Output 3.5 An example of histogram

128 CHAPTER 3. GRACE SYSTEM

f Scat_Plot (ID = 6) for X(3)-X(4) DISTRIBUTION \
E O L et et e e e +
.980 I8212.1.....c0vvvnnnnn e e eeiaeaas 1.1..... 1..11371
.960 I8332..1111.1. .. .0t ittt 11.114%I
.940 I832. . iiiieienennnnnans e e e eieieeeaes 1.1.212%T
.920 I821.11. 0. .t iiieiiiiiiiiiiiieeereeeeennnns 1.1.13%I
.900 I722111.1..... PN 11.112361
.880 I821. .0, ittt iiiiine tiiiiee e ennans 1..... 11181
.860 I7111......... L.t it it et 1..1.1.12361
.840 I821.11.1.1..1.. . iiiiiins cuvnn [AP AP 112271
.820 I831.11.1..... 1ooeeieine viennn [P R 1.1...1171
.800 I821211....11..... 11....... 111...1.2271
.780 I421.1.1..1. ... ciiiiiiiiien 1. 11.111.1281
.760 I711....111..1.......... P 1....111112471
. 740 I421.1.1..1. .. 0ieiiiinn tiiiiennnnn 1........ 1111161
.720 I5212.1...11. . .. iiiiiiiis tiie e N 161
.700 I811..211......ccvvunnn ch e P AP 111171
.680 8= s 1..... 1..... 261
.660 I8111.......... 1....... cee e 1...... 1..1.1..1371
.640 I41...1.. 1. . 0ttt cene 1...1..11112161I
.620 7 e PP 111271
.600 I7221.1.1...1....... ..., e e heeeeeieaen 1.11371
.580 I7211.1......... 1....... e teeaeaaas 1..... 1.111.151
.560 I52...11.0. . 00t i i i it e 1....1.1361I
.540 I52111........ O 1...1....1161I
.520 I5112..... 1...... 1 i e e 12241
.500 Y I5221....1..... 1 i i et 11.1.1138I
.480 I72...1. .00 iiiiinnnnn, C e eeeeres eeaaaan 1....11251
.460 I5.21.11..... T 1....... 1261
.440 I611...... PP 11........ 2.171
.420 0 e e 1...... 1261
.400 I622...... 1........ e teiieeieieae 11251
.380 I73..1.11........... C e e eheeeaaan 1....11111471
.360 I51111....1....... T 1...... 1..1.1.18I
.340 I8211..1... L. iiiiiiiins tiiiinnnns 1........ 211181
.320 I4211..... 1......0.... e et eeeieaen 1.1111..261I
.300 I52111.11....... 1........ C e e 1...1.227I
.280 I611..1...1...11..1........ e eea100010.101111271
.260 I811d. ittt it iiieiiiinennanaarannnnns 1...1.2151
.240 I62.1.1....1.... Ceh e heereieeaaaaan 1..1.2341
.220 I9111.12. .. it iiiiiie tiiiiie it 1..111151
.200 I63.111..1......... Ceh eeeieeaaees 11....1..1...128I
.180 I6211..1.. 1. . 0itiiiiiiiiiine ceieinanans 1.1.11281I
.160 I512..1...... 1........ P 1.11...1.1271
.140 I8221..... 1...... 1........ T 1..1.212171
.120 I83111..1.1..1........... 1... ..., 1121.111391
.100 I7122..11..... e cee e eeeas 1...1...121271
.080 I821.1... .01, iiiiiiiiis ittt 2371
.060 I72121111..... Lt ittt e 1...... 111471
.040 I93311111.1......cvvennnn e e 1..1...1.11.11%I
.020 I9211..1....... P 1.12.12381
.000 I8232...1.1..1.. . ciiiiiiiiiiiinnnnnn 1...1...1..327I
E O e e T +

Low- X
Edge
00
2
00000011111222223333344445555556666777777888899999
Low- 01367923579245791457914580135791358014579235801367
Edge 09909909999009999099990900999999990090999099009909
Output 3.6 An example of scatter plot

3.5. NUMERICAL INTEGRATION 129

5) Message at the JOB termination

At the end of the job a message from BASES is printed. When the job was
terminated due to the shortage of the computing time, the following message is
given:

x*k Computing time out *k
Next Loop Count = 1
Next JOB Flag = 3

Submitting a successive job with the loop count 1 and the job flag 3, the integra-
tion can be continued further. If the job is terminated normally by convergence of
integration or by reaching the maximum iteration number, the following message
is printed out:

*x**x END of BASES Loop *¥**
Max. Loop Count = 1

It may happen that the accuracy of the integration is not small enough even
after the normal termination of job. Because a job is terminated not only by
the accuracy, but also by the iteration number. In this case we can continue the
integration by giving the maximum iteration number larger than the previous job
and by setting the job flag 3.

4 N

*xkkkx Computing Time Information — *k¥kkx

Start at: 93/ 1/ 9 14:02
End at: 93/ 1/ 9 14:26

(1) For this JOB H: M: Sec
Overhead 0: 0: 0.18
Grid Optim. Step 0: 5:57.28
Integration Step 0: 6: 1.20
JOB elapsed time 0:11:58.67

(2) For Total calculation
Overhead :
Grid Optim. Step
Integration Step

o ocom
o oo =
o
=
0

(3) Expected event generation time
Expected time for 1000 events : 21.49 Sec

*x*kkkkx Computing Time Information — *kkkkk

Output 3.7 Computing time information

130

6)

CHAPTER 3. GRACE SYSTEM

List of computing time

As well as the message, a list of computing time is printed at the end of the job
as shown in a output 3.7.

When the integration has been achieved by a single job, the items (1) and (2)
are exactly the same. If the integration is performed by several jobs, the com-
puting time is only for the current job, while that for total calculation includes
all computing time from the beginning. The expected event generation time is
printed at the item (3). From this value, the computing time limit for the event
generation will be evaluated.

Final result of integration

When the print flag is set equal to “1” or “2”, the final result of the integration
step is printed, which consists of the loop number, the cumulative estimate and
error, the number of iterations both for the grid optimization and the integration
steps and the computing time used.

4 M

Loop# Estimate(+- Error)order Itl It2 (H: M: Sec)

Output 3.8 Result of integration

o J

When we calculate the cross section at several energy points by using the loop
option, we can obtain the values of the cross section in the form of a table if the
print flag is set equal to “1”. It is noted that this computing time is reset at the
beginning of each loop count.

Probability information

Before terminating the integration job, BASES generates a data file by the routine
BSWRIT, where

1) Probability information
Probability of each hypercube, according to which a hypercube is sampled
in the event generation.

2) The maximum values of integrand
The maximum value of integrand in each hypercube is stored, by which the
sampling point are tested by using a uniform random number.

3) Contents of histograms
In the event generation, those histograms are printed out comparing to
the distribution of generated events which are defined in the integration by

3.5. NUMERICAL INTEGRATION 131

BASES. For this purpose, the contents of histograms taken in the BASES are
stored in this file.

4) Control data for BASES
By giving the job flag non zero value, the integration can be continued
further as described in section 3.5.1. For this purpose, the control data as
well as the results up to the current job are stored in this file.

Although there are several versions of BASES/SPRING, e.g. the original BASES
/SPRING, BASES25/SPRING25, and BASES50/SPRING50, the data format of this
file does depend on the version. The newest one is BASES50/SPRING50 and is
recommended to use. We call BASES50/SPRING50 as BASES/SPRING throughout
this manual. Be careful not to use the different versions for BASES and SPRING.

132 CHAPTER 3. GRACE SYSTEM

3.6 Event generation

As described in section 2.8, an advantage of BASES/SPRING packages is that if a dif-
ferential cross section is integrated by BASES the four vectors of final state particles
are easily generated with weight one by using SPRING. In this section, a description of
SPRING is given in the following order.

1) Input for SPRING

Program structure of SPRING

(
2
(3

)
)
) Specifications of the subprograms to be prepared
(4) Output from SPRING

The event generation by SPRING is normally quite fast. But if calculation of the inte-
grand requires much computing time, both the integration and the event generation
takes much time. For such a case we recommend to use a vector computer if available.
A vector version of SPRING will be described in section 5.

3.6.1 Input for SPRING

There are two inputs for SPRING. One is a file of the probability information for each
hypercube, which is produced by the integration package BASES. In this file the following
data are saved:

(a) The probability of sampling each hypercube.

(b) The maximum value of integrand in each hypercube.
(c) The contents of histograms and scatter plots.

(d) The control data for BASES.

SPRING with a different version from that of BASES should not be used for the event
generation, since the data format of this file does depend on the version as mentioned
in the previous section. The most new one is BASES50/SPRING50 and is recommended
to use.

Another input is something like the job parameter. At the beginning of the gener-
ation job, the following parameters are read from the logical unit 5:

(1) The number of events to be generated.

(2) The computing time limit in unit of minutes.
Even if an UNIX system is used, this parameter should be given to avoid an infinite
loop as described in subsection 3.6.2.

3.6. EVENT GENERATION 133

The event generation loop is terminated not only by the generation of given numbers
of events, but also by lack of the remaining computing time.

134 CHAPTER 3. GRACE SYSTEM

4 N

Fig. 3.5 Program structure of SPRING

3.6. EVENT GENERATION 135

3.6.2 Program structure of SPRING

In figure 3.5, the program structure of SPRING is shown, where the subprograms in
the white box are generated by GRACE automatically and are to be finalized by user.
Others are included in the BASES/SPRING library or CHANEL library.

In the source list 3.13, the main program MAINSP generated by GRACE is shown.
At the beginning of the main, the common /PLOTB/ is declared to keep enough buffer
for the histograms similar to MAINBS for the integration. Then it calls the steering
routine SPMAIN, whose arguments are the entry name of the integrand function and
a parameter MXTRY. The parameter MXTRY defines the maximum number of trials for
getting an accepted event, which make the event generation free from an infinite loop
described later in this subsection. When the four vectors of generated events are going
to be written on a file, the file must be opened here.

Co)
* Main program for SPRING

IMPLICIT REAL*8(A-H,0-Z)

INCLUDE ’inclh.f’
COMMON /PLOTB/ IBUF(281*NHIST + 2527*NSCAT + 281)

EXTERNAL FUNC

WRITE(*,’ (10X,A//)’)’* 5120 E+ E- => W+ W- A TREE °
open(23,file=’bases.data’,status=’0ld’ ,form=’unformatted’)
MXTRY = 50

CALL SPMAIN(FUNC, MXTRY)

close(23)

STOP
END

Source list 3.13 The main program MAINSP
o /

The program flow in SPMAIN is as follows;
(A) Initialization
(1) At the beginning, the number of generated events and computing time limit

are read.

(2) By the subroutine BSREAD the probability information of all hypercubes and
the contents of histograms and scatter plots are read from a binary file.

(3) USERIN is called for initialization of histograms etc. and kinematics.

136

(4)
(5)

CHAPTER 3. GRACE SYSTEM

The probability distribution read from the file is changed into the cumulative
distribution.

The subprogram SPINIT is called where we can initialize the additional
histograms and scatter plots if we want. The description of additional his-
tograms and scatter plots is given later in this section.

If user wants to use other histogram package (e.g. Handypack or HBOOK)
for taking the event distribution, the initialization of these package should
be done in SPINIT.

(B) Event generation loop

(1)

(6)

A hypercube (say the i-th hypercube) is sampled according to its probability
by a random number generated by a function DRN.

A point is sampled in a small region in the #-th hypercube, sampled in the
step (B.1).

The value of the integrand at the sampled point (is calculated by calling
FUNC.

If the sampled point (satisfies the condition
f(©) f(zi)

E/Mcm.[p(wi)

then this point is accepted as an event, and go out of the event generation
loop.

] <n (= a uniform random number),

If the sampled point is not accepted and the number of trials to get an event
is less than the given value of MXTRY, the histogram information for the point
is cleared by the subroutine SHCLER and go to the step (B.2).

If the number of trials is larger than the given value, this hypercube is
abandoned, and go to the step (B.1).

(C) Four vectors of generated events

When a point is accepted as an event, the subprogram SPEVNT is called, where
the four vectors of final state particles of the accepted event are calculated and
written onto a output file. If the additional histograms and scatter plots are
defined in SPINIT, they are filled in this routine. If other histogram package is
used, their filling routines are called here. This routine should be coded by user
oneself.

Check the number of events

Increment the number of generated event and test the remaining computing time.
If the number of events is less than the given number or there remains enough
computing time for generating one event, go to the step (B.1).

3.6. EVENT GENERATION 137

(E) Termination
Before terminating the job, histograms and scatter plots are printed by SHPLOT.
If other histogram package is used, some print routines should be called in the
subprogram SPTERM.

As described in the step (B.5), the parameter MXTRY plays an important role. With-
out limiting the maximum number of trials to get an event, the generation loop may
come into an infinite loop. This parameter is set in the main program MAINSP and
default number is equal to 50.

3.6.3 Subprograms to be prepared

To use BASES the main program MAINBS and the subprograms USERIN, KINIT, FUNC,
KINEM and USROUT are to be prepared by user. They are generated by GRACE auto-
matically and are left for user to finalize. These subprograms are also necessary for
the event generation by SPRING except for MAINBS and USROUT. As their specifications
can be found in subsections 3.5.2, 3.5.3 and 3.5.4. we will not repeat them here unless
there exist difference between their specifications in BASES and SPRING. In addition to
them, SPRING requires the main program MAINSP and subprograms SPINIT, SPEVNT
and SPTERM.

No change
Main program MAINSP is produced by GRACE in a complete form. Subprograms
USERIN, KINIT and KINEM, used in BASES, does not need to be modified. Espe-
cially the subprogram USERIN should be identical to that used in BASES.

FUNC
When the integrand is a single-valued function, it should not be changed. But if
it is a two-valued function, the last part of the function code must be activate,
which part is normally commented out. The example of this case is shown in the
source list 3.14.

When the kinematics is described by a many-valued function, a sample point in
the integration volume corresponds to several distinct points in the phase space,
for each of which differential cross section is calculated. In the integration the
values of differential cross section at these points are simply summed and the
sum is given as the function value FUNC, while in the event generation a point
among these points must be sampled according to their probabilities.

The example in the source list 3.14 and 3.12 shows the two-valued function case.
For the first point the four vectors and numerical value of the differential cross
section are stored in an arrays VEC(j, k) and variable DFT at the do loop 420 in
the list 3.12. If the ratio of DFT and FUNC is less than a random number, the
second point in the phase space is taken as a sampled point, where FUNC is the
sum of the differential cross section values at these two points. This method can
be easily extended to a many-valued function case.

138 CHAPTER 3. GRACE SYSTEM

~
1000 CONTINUE
FUNC = ANSUM
* __
* Put the final 4 vectors into the arrays VEC()
* __
IF(FUNC .GT. 0.DO) THEN
IF(DFT/FUNC .LT. DRN(DUM)) THEN
DO 850 K = 1, NEXTRN
DO 850 J =1, 4
VEC(J,K) = P(J,K)
850 CONTINUE
ENDIF
ENDIF
RETURN
END
Source list 3.14 The last part of FUNC
o /

SPINIT
Subprogram SPINIT, generated by GRACE, is just dummy. Before going into the
generation loop, this subprogram is called for initialization.

If you want to make some histograms or scatter plots in addition to those intro-
duced in BASES, each histogram or scatter plot should be initialized here. In this
meaning these histograms or scatter plots defined here are called as the additional
histograms or scatter plots. An example is shown in the source list 3.15.

4 N
SUBROUTINE SPINIT

CALL XHINIT(5, 0.DO, 180.DO, 36,’Photon Angular dist.’)

RETURN
END

Source list 3.15 An example of SPINIT
o J/

If someone wants to use other histogram package like Handypack or HBOOK,
initialization of these programs should be done in this routine.

SPEVNT
Subprogram SPEVNT, generated by GRACE, is a dummy routine. Only when a
event is accepted, this routine is called. The four vectors of generated event are
to be written on a file here. The function program FUNC, generated by GRACE,

3.6. EVENT GENERATION 139

has the common variable VEC(4,NEXTRN), where the four vectors of initial and
final particles are stored.

If the additional histograms or scatter plots are defined in SPINIT, the filling
routines XHFILL or DHFILL are to be called here. Am example to take the polar
angle distribution of the photon is in the source list 3.16. For other histogram
packages, the filling routines should be called here.

SPTERM
Subprogram SPTERM, generated by GRACE, is dummy. This routine is called
just before terminating the process. When other histogram package is used, the
output routine should be called in this routine.

It should be noted that the subprograms USERIN and FUNC must not be changed. If
some part is changed and it gives a different behavior of the integrand, the generation
efficiency of SPRING might become very low and the completely wrong event samples
might be generated because the resultant differential cross section does not match to
the probability distribution in the input file of SPRING. The same situation can emerge
when events are generated by using the differential cross section of process A with the
input file produced by using a different process B.

4 A

SUBROUTINE SPEVNT
IMPLICIT REAL*8 (A-H, 0-Z)

PARAMETER (NGRAPH = 28, NEXTRN = 5, LAG = 72)
COMMON /SP4VEC/ VEC(4,NEXTRN)
COMMON / AMCNST / PI, PI2, RAD, GEVPB, ALPHA

Calculate photon angular dist.

PP = SQRT((VEC(1,1)**x2+VEC(2,1)**2+VEC(3,1) **2)
*(VEC(1,5)**%24+VEC(2,5) **2+VEC(3,5) **2))

o] =(VEC(1,1)*VEC(1,5)+VEC(2,1)*VEC(2,5)
. +VEC(3,1)*VEC(3,5))/PP
TH = AC0S(CS)*180.D0/PI

IF(TH .LT. 0.DO) THEN
PRINT *,TH,CS
ENDIF

CALL XHFILL(5, TH, PP)

RETURN
END

Source list 3.16 An example of SPEVNT

140 CHAPTER 3. GRACE SYSTEM

3.6.4 Output from SPRING

The output from SPRING consists of the general information, histogram output, the
number of trials distribution and the four vector output. There are two kinds of
histogram output, one is the original histogram and other is the additional histogram.

General information
After generating events, the following information is printed:

/f Date: 93/ 1/20 22:20 ‘\
ok ok ok ook ok ok ok ook o sk ok ok ook ook ok sk ok ook o ko ok ok sk ok sk ok ok ook ok ok ok ook ko ok
* *
* SSSS PPPPP RRRRR IIIT N NN GGGG *
* SS SS PP PP RR RR II NN NN GG GG *
* SS PP PP RR RR II NNN NN GG *
* SSSS PPPPP RRRR II NNN NN GG GGGG *
* SS PP RR RR II NN NNN GG GG *
* SS SS PP RR RR II NN NN GG GG *
* SSSS PP RR RR IIII NN N GGGG *
* *
* *

SPRING Version 5.0
ke ko ok o o ok ok ok ok ok ok ok o o ok Kok ok ok o ok ok ok sk sk ok sk o o ok ok sk ok ok ok o o ok ok ok ok ok sk o ok

10000
270.260 Seconds
.230 Seconds
.650 Seconds
271.140 Seconds
50 per event
0

Number of generated events

Computing time for generation
for Overhead
for Histograms

GO time
Max. number of trials MXTRY
Number of mis-generations

Output 3.9 General information of the event generation

N)

When the number of trials to generate one event exceeds the number MXTRY,
this outbreak is counted as the number of mis-generation. If this number is
not negligible small, something happens in the event generation, e.g. mis-match
between the integrand and the probability information of the input file, or the
grids determined by BASES are not enough optimized. This can be also checked
by the number of trials distribution described later.

Histograms
There are two kinds of histograms.

One is the original histogram, which is defined in the integration stage by BASES.
The contents of these histograms produced in the integration are read from the
input file and are compared with the frequency distribution taken in the event
generation. This comparison is done in the logarithmic scale, where the statistical
error of each bin is represented by “< >”. If error is smaller than the two character
space, only the frequency is shown by “0”. The histogram obtained by BASES is
represented by “*”. An example of the original histogram is shown in the output

3.6. EVENT GENERATION 141

3.10, which can be compared with the histogram shown in the output 3.5 of
section 3.5.6.

Another kind of histogram is the additional histogram, which is defined in SPINIT.
Since there is no data taken in the integration stage for the additional histogram,
only the frequency distribution is displayed, whose example is given in the output
3.11.

142 CHAPTER 3. GRACE SYSTEM

4 M

Original Histogram (ID = 3) for X(3) SPECTRUM
Total = 10000 events "*" : Orig. Dist. in Log Scale.

X d(Sig/dx) dN/dx 1.0E-01 1.0E+00 1.0E+01
Fomm————— o Fom————— e e e e L P L e e e e e e e P L L e e T +
I E O0I .000E OI 0I I
I .000 I 2.595E 1I 15 30 T ke ok sk ok sk ke ok sk ke ok sk ok ok sk ok ok ok ok ok ok ok sk ok ok sk ok ok ok sk ok ok ok sk ok ook ok ok ok kok kokokkok 0 T
I .020 I 8.402E OI SO2T skskeske sk ke ok ok s ok kb ok ok o oo ok sk o sk sk sk sk ok ok ok ok ok ook ok skokokokok ok) I
I .040 I 5.954E O0I 358 Tk sk sk ok sk ke ok sk ok sk ke ok sk ok ok ok ok ok sk ok ok ok sk ok ok sk ok ok sk ok ok ok ok ok <> I
I .060 I 4.817E OI 265 T sksksk sk sk ok ok sk ok s ok ok ook ok ook ook sk sk kol ok ok ok ok ok ok ok <> I
I .080 I 3.415E OI 217 Tokeskskskkok ok sk ok ok ok sk ok okokokokok sk kol ok ok ok ok ok ok < > I
I .100 I 3.698E OI 07 T ok sk sk ok sk ke ok sk ok sk ok ok sk ok ok ok ok ok sk ok ok sk ok ok ok ok sk ok ok k<> I
I .120 I 3.053E OI 181 Tsksksk ok sk ok sk sk sk sk sk sk ok ok ok o ok ok s ok ook ok sk ok ke ok ok <> I
I .140 I 2.898E O0I 171 T ok sk ok sk s ok ok ok sk sk ok ok ok sk sk ok sk ok okok ok skok kok ok ok ok <> I
I .160 I 2.443E OI 178 T sk sk ook sk sk sk sk sk sk ok ok ok ok ok sokoskokokok sk ok ok k < 0> I
I .180 I 2.917E O0I 1 39T sk skok sk sk ok ok ke sk sk ok ok ok sk ok ok sk ok ok ok ok ok ok ok <0 > % I
I .200 I 2.183E O0I 119 T sksksksk sk sk sk sk sk sk sk ok ok ok ok ook ok sokokokokok ok <> I
I 220 I 1.874E OI 11 8T sk skok sk sk ok ok e sk ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok < D> I
I .240 I 2.161E O0I 11 2T #skoksk sk ok ok ok ok ok ok ok ok ok skok ok ok k ok ok ok < 0> I
I .260 I 1.924E 0I 10T e sksk sk sk ok sk sk ke sk ok ok ok ok sk sk ok ok kok kb ok < 0> I
I .280 I 1.589E O0I 117 T ok skeok sk sk ok ok e ok ok ok ok sk ok ok ok sk ok ook ok ok ok ok <> I
I .300 I 1.543E O0I 10T e sksk ke sk ok sk sk ke sk ok ok ok ok sk sk ok ok kok kok ok < 0> I
I .320 I 1.387E O0I QO Tk skak sk ok s ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok < 0> I
I .340 I 1.316E OI 86 Tk sk sk sk sk ok sk ok ok sk ok sk ok ok ok sk sk ok ok ok k < 0> I
I .360 I 1.239E O0I S0 Tk skk skok sk sk ok ok ks ok skok ok ok ok sk ok ok ok < 0> I
I .380 I 1.282E O0I 56 T ok sk ok sk ok ok ok ok ok sk ok ok sk ok ok ok ok ok < 0D %k I
I .400 I 1.021E O0I 49T # ko okkokkkokkok ok k< 0> % I
I .420 I 9.757E -1I T 1T skok ok ok ok sk ok ok ok ok sk kokok ok ok ok ok ok < 0> I
I .440 I 9.046E -1I 49T *kkkksskok ok ok ok kkkkokk < 0> I
I .460 I 8.947E -1I 49T #xkkkkskkkokkkkkkkx<0> I
I .480 I 9.287E -1I 44T *kkkkkkokokokkkkkokok< 0> * I
I .500 I 8.258E -1I ABT #xkxkkkkkkkkkkxk<x0> I
I .520 I 9.083E -1I 31 Tokskokskkkkkkkkk <k 0D kkokok I
I .540 I 9.549E -1I 45T Hkkkksdkokokokkkkkkok< 0> * I
I .560 I 9.718E -1I 49T #xkkkkskkkokkkkk k%< 0> I
I .580 I 9.076E -1I BTk kokkakok ok hokokkokkokk k< 0> I
I .600 I 1.193E O0I 68 Tk skk sk ok sk ok ok sk ko ok ok ok kkkk k< 0> I
I .620 I 1.401E 0OI T 3T ksk sk sk kb sk ok ok ok sk ook ok kb ok ok < 0> I
I .640 I 1.428E O0I 82T sskk skok sk sk ok ks ok ok ok ok k ok ok ok < 0> I
I .660 I 1.097E OI OB Tkkskkok ko kodkokokokokokokokokokk <> I
I .680 I 1.947E O0I Q6 Tk sk ok sk ok sk ok ok ok ok ok ook ok sk ok sk ok ok ok ok ok < (0> I
I .700 I 1.979E O0I 1 31 T sk skeok sk sk ok ok e sk sk ok ok sk ok ok ok sk ok ook ok ok ok ok ok <> I
I .720 I 2.099E OI 135 T sksksksk ook sk sk sk sk sk ok ok ok ook ok ook okokokok ok <> I
I .740 I 2.214E O0I 11O T #skok sk sk ok ok ok ok ok ok ok ke ok ok skok ok ok k ok k ok < 0> I
I .760 I 1.784E O0I 128 T sk sk sk sk ok ok ok ok sk ok sk ok sk sk sk sk okoskokok ok ok ok < 0> I
I .780 I 2.376E O0OI 11 QT sk skok sk sk ok ok e ok sk ok ok sk ok ok ok sk sk ok ok ok ok ok ok ok < Dk I
I .800 I 2.483E O0I 117 Tk sk sk sk sk sk ok ok ok ook ok o ok ookokokok < D 5k I
I 820 I 2.566E OI 16O T sk sk ok sk sk ok ok ke sk sk ok ok o sk ok ok sk ok ok ok skok ko ok ok ok <> I
I .840 I 2.883E O0I 1 B2 T sk sk ok sk sk ok ok ke sk sk ok ok o ok ok ok sk ok kok ok skok ko ok ok ok <> I
I .860 I 2.803E OI 176 T sk sk ok sk ok sk sk sk sk sk ok ok ok ok ok ok sokokokokok sk ok ok ok < 0> I
I .880 I 3.448E O0I 215 T ke sk sk ok sk ke ok sk ok sk ok ok sk ok ok ok ok ok sk ok ok sk ok ok ok ok ok kok k<> I
I .900 I 3.906E OI 206 T skskske sk sk ok ok sk ok sk ok ok ook koo ok sk kol ok ok ok ok ok < > I
I .920 I 4.146E OI 260 T ok ok sk ok sk ke ok sk ok sk ke ok sk ok ok ok ok ok sk ok ok ok sk ok okok sk ok ok ok ok ok <> I
I .940 I 5.760E OI 325 Tsksksk sk sk ok ok sk ok ook ok ook ok ook koo ok sk ks sk ok ok ok ok ok ok ok ok <> I
I .960 I 8.741E O0I BT 5T sk sk ok sk ok ok sk ok ok ok ok sk ok ok ok ok sk sk ok ok s ok ok ok sk sk ok ok sk sk ok ok ok ok kok ok ok <> I
I .980 I 2.612E 1I 1523 T s sk sk s sk ok ok sk s s sk sk sk sk ok ok ok ok ok s ok s o ook oo sk sk sk sk ok ok ok ok skokokokokokok 0 T
I E O0I .000E OI 0I
Fomm————— Fomm Fom————— e e e e L L L e e e e e e L e e e T +

X d(Sig/dx) dN/dx "0" : Generated Events.(Arbitrary unit in Log)

Output 3.10 An example of the original histogram

3.6. EVENT GENERATION 143
4 N
Additional Histogram (ID = 5) for Photon Angular dist.
Total = 9999 events "x" : No. of events in Linear scale.

X Lg(dN/dx) dN/dx 0.0E+00 1.4E+03 2.8E+03 4.1E+03
Fomm————— L Fo—————— L L e e L L e +
I E 21 000E O0I 0I I
I .000 I 4.386E 31 4386 Tk sk sk sk ok sk ok sk ok ok sk ok ok ok sk ok sk ok ok ok ok sk sk ok ok sk kokkok ok ok ok x k(000000 I
I 050 I 2.430E 2I 243I**x000000000000000000000000000 I
I 100 I 8.800E 1I 88I+x000000000000000000000000 I
I 150 I 6.900E 1I 69I+0000000000000000000000 I
I 200 I 3.900E 1I 39I+0000000000000000000 I
I 250 I 3.200E 1I 32I1+000000000000000000 I
I 300 I 1.500E 1I 15I+00000000000000 I
I 350 I 2.200E 1I 221+0000000000000000 I
I .400 I 1.300E 1I 13I+0000000000000 I
I .450 I 6.000E OI 6Ix000000000 I
I 500 I 9.000E OI 9I+00000000000 I
I 550 I 6.000E OI 6Ix000000000 I
I .600 I 1.100E 1I 11I+*0000000000000 I
I 650 I 1.100E 1I 11I+0000000000000 I
I .700 I 1.300E 1I 13I+0000000000000 I
I 750 I 4.000E OI 4I+0000000 I
I .800 I 6.000E OI 6Ix000000000 I
I 850 I 8.000E OI 8I+00000000000 I
I .900 I 6.000E OI 6Ix000000000 I
I .950 I 9.000E OI 9Ix00000000000 I
I 1.000 I 7.000E OI 7I+0000000000 I
I 1.050 I 8.000E OI 8Ix00000000000 I
I 1.100 I 8.000E OI 8I+00000000000 I
I 1.150 I 1.300E 1I 131+0000000000000 I
I 1.200 I 7.000E OI 7I+0000000000 I
I 1.250 I 1.200E 1I 12I1+*0000000000000 I
I 1.300 I 9.000E OI 9I+00000000000 I
I 1.350 I 1.100E 1I 11I+0000000000000 I
I 1.400 I 2.200E 1I 221+0000000000000000 I
I 1.450 I 3.200E 1I 32I*000000000000000000 I
I 1.500 I 2.600E 1I 26I1+00000000000000000 I
I 1.550 I 3.300E 1I 33I*000000000000000000 I
I 1.600 I 5.200E 1I 521+000000000000000000000 I
I 1.650 I 9.100E 1I 91I*000000000000000000000000 I
I 1.700 I 1.750E 2I 175I*%000000000000000000000000000 I
I 1.750 I 4.497E 31 AAQT T ok sk ok sk ok sk sk ok sk ok ok sk ok sk ok ok ok sk sk ok skok sk ok kokkokokkok ok ok x k(00000 I
I E 21 000E O0I 0I I
Fomm————— L Fo—————— L e L Y T e e e T +

X Lg(dN/dx) dN/dx 1.0E+00 1.0E+01 1.0E+02 1.0E+03

"0" : No. of Events in Log. scale.
Output 3.11 An example of the additional histogram
o J

Number of trials distribution
The number of trials distribution is printed out at the final stage, by which we
can see how efficient the event generation was. The first column represents the
number of trials to obtain one event and the number of events is shown in the
third column. An example for the process efe” — WTW ~ is shown in the

output 3.12, where about 80% of events are generated with the first trial.

144

CHAPTER 3. GRACE SYSTEM

f *kkkkkkkkkkkk Number of trials to get an event *kkkkkkkkkkkk \
Total = 10000 events "x¥" : No. of events in Linear scale.

X Lg(dN/dx) dN/dx 0.0E+00 2.3E+03 4 .5E+03 6.8E+03
Fomm B ettt +mmm R ettt e Fom Fom +
I E 1 I .000E OI 0I I
I .100 I 6.777E 3I BT 77 T skk ok sk ok sk sk ok ok sk ok ok ok sk sk ok ok ok sk ok ok okok ok ok ok kokkkok ok ok kx 0000000000 I
I .200 I 1.826E 3I 1826I****x***xx***000000000000000000000000000000 I
I .300 I 6.110E 2I 611I*xx*x0000000000000000000000000000000 I
I .400 I 2.770E 2I 277Ix*x00000000000000000000000000000 I
I .500 I 1.560E 2I 1561+000000000000000000000000000 I
I .600 I 1.080E 2I 108I%0000000000000000000000000 I
I .700 I 6.000E 1I 60I+0000000000000000000000 I
I .800 I 3.600E 1I 36Ix0000000000000000000 I
I .900 I 3.400E 1I 34I*x0000000000000000000 I
I 1.000 I 2.600E 1I 26I+00000000000000000 I
I 1.100 I 2.000E 1I 20I+0000000000000000 I
I 1.200 I 1.700E 1I 171+x000000000000000 I
I 1.300 I 8.000E OI 8Ix00000000000 I
I 1.400 I 5.000E OI 5I%00000000 I
I 1.500 I 5.000E OI 5Ix00000000 I
I 1.600 I 2.000E OI 2I%000 I
I 1.700 I 3.000E OI 3I+00000 I
I 1.800 I 4.000E OI 4I+0000000 I
I 1.900 I 4.000E OI 4I+0000000 I
I 2.000 I 4.000E OI 4Ix0000000 I
I 2.100 I .000E OI 0I I
I 2.200 I .000E OI 0I I
I 2.300 I 3.000E OI 3I+00000 I
I 2.400 I 2.000E OI 2I%000 I
I 2.500 I 1.000E OI 1I0 I
I 2.600 I 4.000E OI 4I+0000000 I
I 2.700 I 2.000E OI 2I%000 I
I 2.800 I .000E OI 0I I
I 2.900 I 1.000E OI 1I0 I
I 3.000 I .000E OI 0I I
I 3.100 I .000E OI 0I I
I 3.200 I 2.000E OI 2I%000 I
I 3.300 I .000E OI 0I I
I 3.400 I .000E OI 0I I
I 3.500 I .000E OI 0I I
I 3.600 I .000E OI 0I I
I 3.700 I .000E OI 0I I
I 3.800 I .000E OI 0I I
I 3.900 I .000E OI 0I I
I 4.000 I .000E OI 0I I
I 4.100 I .000E OI 0I I
I 4.200 I .000E OI 0I I
I 4.300 I 1.000E OI 1I0 I
I 4.400 I .000E OI 0I I
I 4.500 I .000E OI 0I I
I 4.600 I .000E OI 0I I
I 4.700 I 1.000E OI 110 I
I 4.800 I .000E OI 0I I
I 4.900 I .000E OI 0I I
I 5.000I .000E OI 0I I
I E 1 I .000E OI 0I I
Fomm B ettt Fomm R ettt et Fomm - Fom +

X Lg(dN/dx) dN/dx 1.0E+00 1.0E+01 1.0E+02 1.0E+03

"0" : No. of Events in Log. scale.
K Output 3.12 The number of trials distribution
/

3.6. EVENT GENERATION 145

If this distribution has a long tail, this means generation efficiency is low, then
the following points should be tested:

(1) The grids determined by BASES is not optimized well. If this is the case, try
integration again with more sampling points (by setting NCALL larger than
the current number).

(2) The integrand does not match for the probability distribution in the input
file. Check whether the subprograms USERIN and FUNC are exactly identical
to those used in the integration.

(3) The integration could not give a good answer due to unsuitable integration
variables for the integrand. In this case, improvement of the kinematics is
required.

Chapter 4

How to use GRACE system

The GRACE system was developed on a main frame computer FACOM, but now it is
available on UNIX system. The usage of GRACE on FACOM is basically to use JCL in the
Batch Job environment. Although an interactive mode is available on an UNIX system,
the interpreter of GRACE on UNIX system is still very primitive. It will be improved in
near future. We suppose the X-Window system is available on UNIX system, which is
used for drawing Feynman graphs on the screen. The UNIX systems, where we have
installed and tested GRACE, are SUN SPARC and HP9000/750.

In the first section the usage on UNIX machine is described and the second section
is devoted to that on the main frame computer. In the last section how to run on a
parallel processor is briefly described.

4.1 Running on UNIX

In this section, we describe how to execute GRACE system on UNIX system. We assume
the “GRACEDIR” is a directory where GRACE system is installed.

At first user should add the following statement in the file “.cshrc”. !

setenv GRACEDIR /usr/local/grace
set path=($path $(GRACEDIR)/bin)

$ (GRACEDIR) /bin is a subdirectory where the executable system of GRACE has been
installed.

It is recommended to create a new directory for the calculation of one physical process.
For the process ete” — WTW +, as an example, we create a directory eewwa and
move to the directory as below:

grace}, mkdir eewwa
grace}, cd eewwa

Then we start to generate Feynman graphs for the process in the next subsection.

1We assume user uses C shell.

146

4.1. RUNNING ON UNIX 147

4.1.1 Generate Feynman graph

For the graph generation the following two input files are necessary.
1) Definition of physical process

2) Model definition file

Definition of physical process

Specification of defining physical process is described in subsection 3.1.1. When there
is the target process in the file $ (GRACEDIR)/data/Index, the input parameters for
the process can be found in a file dnnnn, where the number nnnn is the process number
defined in the file Index. For the process ete” — W™W ~ we can use the file d5120,
where the following parameter is saved.

* 5120 E+E- => W+ W- A TREE
WORDER 3

INITIAL EL 1

INITIAL ELB 1

FINAL WB 1

FINAL WBB 1

FINAL AB 1

END

Fig. 4.1 Input file for the process ete™ — WTW vy
_ /)

When there is no input-parameter file for the process to be studied, we have to write
them by ourselves according to the specification described in subsection 3.1.1.

Model definition file

Two model definition files, “particle.table” and “particle.table0”, are prepared
in GRACE system as the standard, whose descriptions are given in chapter 6. As the
default the file $ (GRACEDIR)/data/particle.table is used for the model definition
file. If user wants to use his own model definition file instead of this default file, then
user should specify the input file name (for example “myparticle.table”) by the
environment parameter “GRACETABLE” as follows;

[setenv GRACETABLE /home/graceuser/myparticle.table]

148 CHAPTER 4. HOW TO USE GRACE SYSTEM

Execute graph generation

Suppose a file eewwa . input is created in the current directory eewwa as the input file
defining the physical process, then the graph generation procedure starts by typing the
command :

(:grace% gengraph eewwa.input :j

Then the graph generator creates a file “INTBL” in the current directory, to which the
particle table is copied from the model definition file. As an output a file “OUTDS” is
created in the current directory, where the graph information is written. Also the total
number of generated graphs is reported.

4.1.2 Draw Feynman graph

A Feynman graph drawer is initiated by the command:

[igrace% draw :j

Then Drawer asks the first and last graph numbers, you want to draw, as follows;

GRACE Version 1.0
Feynman Graph Drawer.

* Enter Graph numbers (First, Last) or "/" for all graphs.

Knowing that there are 28 graphs in the process ete” — WTW ™+, by typing

(i)
C)

then Drawer prints the current physical process and asks further

or

4.1. RUNNING ON UNIX 149

*particle.table Electro-Weak and QCD, no Cabbibo Mixing, with Scalar
* 5120 E+ E- => W+ W- A TREE

Enter N, M (N*M graphs in a page)

When “2, 3” is given as the input then the first six graphs are drawn on the screen by
the X-Window. Clicking somewhere on this window, the next six graphs will appear.
When all graphs are drawn, Drawer will be terminated. In the current version of Drawer
nothing can be done except for drawing Feynman graphs. It will be improved in future.
This procedure uses the model definition file “INTBL” and the graph information file
“0UTDS”, which should not be changed.

4.1.3 Generate source code

After the graph generation, FORTRAN source code is generated by typing the com-
mand:

[grace}, genfort]

The procedure genfort uses the files INTBL and QUTDS as input, which should not be
changed. The files xxxxxx.f and Makefile are created as the output in the current
directory, where xxxxxx corresponds to a name of program components described in
section 3.2. For instance, subprogram SETMAS appeared in section 3.2 is created in a
file setmas.f.

Editing FORTRAN source codes

The following program components should be finalized by the user.

1) Initialization routine USERIN
In USERIN the following initialization should be done (see subsection 3.5.3).

— Integration parameters

NDIM The number of dimensions of integral

NWILD The number of wild variables

XL(%),XU(i) The lower and upper bounds of integration variable X (1)

IG(%) The grid optimization flag for i-th variable

NCALL The number of sampling points per iteration

Acci The expected accuracy for the grid optimization step

ITMX1 The maximum iteration number for the grid optimization step
ACC2 The expected accuracy for the integration step

ITMX2 The maximum iteration number for the integration step

150 CHAPTER 4. HOW TO USE GRACE SYSTEM

— Initialization of histograms and scatter plots
To let BASES/SPRING know the maximum numbers of histograms and scatter
plots, BHINIT should be called. These numbers are given by a parameter
statement in the include file “inclh.f”.

The initialization routines XHINIT and DHINIT should be called for each
histogram and scatter plot, respectively. In the generated USERIN by GRACE,
histograms for all integration variables and scatter plots for all combinations
of them are required. When one wants to take histograms and scatter plots
by his own will, this part should be changed according to the specification
in subsection 3.5.5.

— Initialization of the amplitude calculation
Since this part is automatically generated by GRACE, it needs no change.

— Initialization of the kinematics by calling KINIT
The subroutine KINIT should be prepared by user (see section 3.3).

2) Function program of the integrand
The function program FUNC should be made in a complete form.

— The kinematics routine KINEM should be prepared by user, whose specification
is given in subsection 3.3.

— Filling histograms and scatter plots
In the generated FUNC by GRACE, histograms for all integration variables and
scatter plots for all combinations of them are to be filled here. When one
changed the initialization of histograms and scatter plots, their filling parts
should be also changed (see subsection 3.5.5).

3) Include file “inclh.f”
This file is included in the main programs MAINBS, MAINSP and the subroutine
USERIN, where the maximum numbers of histograms and scatter plots are set by
the parameter statement, as described in sections 3.5.2, 3.5.3 and 3.6.2. Since
these numbers are still open in the generated file inclh.f, they should be given
by user.

4.1.4 Makefile

The command “genfort” also generates the makefile. The libraries BASES/SPRING,
interface to CHANEL and CHANEL are stored in the directory GRACELDIR. The objects
commonly used both in BASES and SPRING are defined by macro name 0BJS.

4.1. RUNNING ON UNIX

4 N
SHELL = /bin/csh
FC = fort77
#
GRACELDIR = /usr/local/grace/lib
#
BASESLIB = bases
CHANELLIB = chanel
BDUMMLIB = bdummy
#
0BJS = userin.o amparm.o \
func.o amptbl.o ampsum.o ampord.o \
usrout.o kinit.o kinem.o setmas.o \
am0001.0 am0002.0 am0003.0 am0004.0 \
am0005.0 am0006.0 am0007.0 am0008.o0 \
am0009.0 am0010.0 am0011.0 am0012.0 \
am0013.0 am0014.0 am0015.0 am0016.0 \
am0017.0 am0018.0 am0019.0 am0020.0 \
am0021.0 am0022.0 am0023.0 am0024.0 \
am0025.0 am0026.0 am0027.o0 am0028.o0
INT = int
INTOBJ = mainbs.o
SPRING = spring
SPOBJS = mainsp.o spevnt.o spinit.o spterm.o
TEST = test
TESTOBJ = test.o
#
all: $(INT) $(SPRING)
#
$(INT): $ (INTOBJ) $(0BJS) $(GRACELDIR)/1ib$(BASESLIB).a \
$ (GRACELDIR)/1ib$ (CHANELLIB) .a
$(FC) $(INTOBJ) $(0BJS) -o $(INT) -L$(GRACELDIR) \
-1$(BASESLIB) -1$(CHANELLIB) $(FFLAGS)
$ (SPRING) : $(SP0OBJS) $(0BJS) $(GRACELDIR)/1ib$(BASESLIB).a
$(FC) $(SP0BJS) $(0BJS) -o $(SPRING) -L$(GRACELDIR) \
-1$(BASESLIB) -1$(CHANELLIB) $(FFLAGS)
#
test: $ (TEST)
#
$ (TEST) : $(0BJS) $(TESTOBJ) $(GRACELDIR)/1ib$(BDUMMLIB).a \
$ (GRACELDIR) /1ib$ (CHANELLIB) .a
$(FC) $(TESTOBJ) $(0BJS) -o $(TEST) -L$(GRACELDIR) \
-1$(BDUMMLIB) -1$(CHANELLIB) $(FFLAGS)
#
clean:
rm -f *.o0 $(INT) $(SPRING) $(TEST)
Source list 4.1 Makefile for HP9000/750
_ J

151

The macro names INT and INTOBJ define the executable and the object of the main
program for the integration, respectively. Similarly the macro names SPRING, SPOBJS,

152 CHAPTER 4. HOW TO USE GRACE SYSTEM
TEST and TESTOBJ are defined.

4.1.5 Test of the gauge invariance

The main program test.f is used to check the generated amplitudes at a point in
the integration volume as described in section 3.4. In the main program subroutines
USERIN and FUNC are called, which call the histogram packages. Since the histogram
has no meaning in this test, we use dummy library for them stored in the directory
GRACELDIR. Thus it is not necessary to comment out the statements in the subprograms
FUNC and USERIN for this test, which call relevant histogram routines.

The executable test is created and is executed by the following commands:

grace}, make test
grace), test

An example of output from the test for the process ete — WTW ~ is shown in
section 3.4, where the consistency with 14 digits is found between the covariant and
unitary gauges. It should be noted that this test does not guarantee a complete gauge
invariance even though it could give consistency between the two gauges, since it tests
only at a specific point in the phase space. It is recommended to test the gauge
invariance at several points in the phase space.

4.1.6 Integration

After preparation of the subprograms USERIN, KINIT, FUNC and KINEM and a successful
test of gauge invariance, we can proceed to the numerical integration by BASES. At
first we should make the executables for the integration and event generation by typing
make.

(:grace% make :)

Then the executables int and spring are created.
For integration the command int is used.

(:grace% int jj

When this is the first time to run the integration, the interpreter asks the job parameters
with the following prompt:

4.1. RUNNING ON UNIX 153

CLOOPF ,LOOPL ,NPRINT, JFLAG]

where LOOPF, LOOPL, NPRINT and JFLAG are the first and last loop numbers, print flag
and job flag, respectively, described in subsection 3.5.1. These parameters are saved
in a file “bases. jobprm” in the current directory. From the next run, the system uses
this file instead of asking them. When these parameters are needed to change, the new
parameters are to be given in this file.

The output from the integration package BASES is normally printed on a screen. When
we want to write the output on a file, bases.output as an example, the redirection of
UNIX system can be applied as follows;

[grace% int > bases.output)

Before termination of the integration job, BASES writes the probability information on
a binary file bases.data, which is used for the event generation.

It is recommended to look at the integration result carefully, especially over the con-
vergency behaviors both for the grid optimization and integration steps. When the
accuracy of each iteration fluctuates, iteration by iteration, and, in some case, it jumps
up suddenly to a large value compared to the other iterations, the resultant estimate
of integral may not be reliable. There are two possible origins of this behavior; one
is due to too small sampling points and the other due to an unsuitable choice of the
integration variables for the integrand (see subsections 2.7.4 and 3.5.6). An example
of output for the process ete™ — WTW ~+ is given in subsection 3.5.6.

4.1.7 Event generation

When the four vectors of generated events are to be written on a file, then this file
should be open in MAINSP and the four vectors should be written on the file in SPEVNT.
In the case, where some other histogram packages are used for taking histograms of
generated events, initialization of these histograms should be done in SPINIT, filling
them in SPEVNT and printing them in SPTERM. The specifications of these routines are
given in section 3.6.3.

Since the executable spring is created by the make command already, the event
generation starts by typing

[grace% spring)

Then SPRING reads the probability information from the binary file bases.data and
asks the number of events and computing time with the following prompt:

154 CHAPTER 4. HOW TO USE GRACE SYSTEM

[:Number of events, Computing time (minutes) ? :)

The event generation will run until the given number of events are generated or the
computing time is exhausted. The reason why we have the computing time limit in
the event generation is that the generation loop may have a possibility to get into an
infinite loop when some mistakes were made (see subsections 3.5.6 item 8, subsections
3.6.1 and 3.6.2). In order to estimate the computing time for the event generation,
it is recommended to use the expected generation time given in the computing time
information of BASES output.(see section 3.5.6 item 6)

When the kinematics is made of a single-valued function, the subprogram FUNC should
be identical both in the integration and event generation. But if it is not the case, FUNC
in the event generation should be modified from that in the integration as described in
subsection 3.6.1.

An example of output from SPRING is shown in subsection 3.6.4, which consists of the
general information, original and additional histograms, scatter plots, and number of
trials distribution. From the original histograms we can see how the generated events
reproduce those distributions produced by the integration. In the number of trials
distribution we can see the generation efficiency. In the example about 80 % of events
are generated by the first trial.

4.2 Running on FACOM

GRACE system on FACOM at KEK is installed in the user-id MLIB. As mentioned before the
GRACE system consists of the graph generation subsystem, source generation subsystem,
integration subsystem and event generation subsystem. Under the user MLIB there are
following four files for user’s purpose:

1) MLIB.GRACE.Vyymmdd.CNTL
contains several members of JCL to generate and to execute the graph generation
and source generation subsystems.

2) MLIB.GRACE.Vyymmdd.DATA
contains the particle table and example of input data for the graph generation
and source generation subsystems.

3) MLIB.GRACE.Vyymmdd.LOAD
contains the library load module for the graph generation and source generation
subsystems, and for the amplitude calculation.

4) MLIB.BASES50.L0OAD
contains the library load module for the integration and the event generation
subsystems.

4.2. RUNNING ON FACOM 155

Vyymmdd in the file names means the version number when they are created.

In the following subsections Job control cards necessary to use GRACE system are
described.

4.2.1 Graph generation and source code generation

On UNIX system, the graph generation, drawing graph and source generation are pro-
cessed as separate procedures. On FACOM, however, they can be processed with a single
job by submitting the JCL below.

Submission of this JCL initiates a catalogued procedure #GRACE, which uses the
following data sets:

1) //GENFGR.INTBL DD
This defines the model used in the graph generation and source generation steps.
When this data set definition is commented out, the default model definition file
“PTCLTBLO” is used. A beginner is recommended to use this default file without
change.

When user wants to use his own model definition file, its file name should be
given in this definition as in the example.

2) //GENFGR.SYSIN DD
This defines the input data for defining physical process described in subsection
3.1.1, which is used in the graph generation.

3) //GENFGR.OUTDS DD
This defines the output file of the graph information, by which Feynman graphs
are drawn. This file is also used in the source generation as an input. When this
definition is commented out, a work file is allocated for this purpose, which can
not use after this job.

4) //CREATE.NEWDS DD
This step creates a new file, “userid.@.D5120.FORT77” as an example, in which
generated FORTRAN source code is written.

5) //GENFORT.FTO5F001 DD
The file name created in the step //CREATE.NEWDS DD should be given here again
to let the source generator know this name.

By submitting a job by this JCL, the structure of the diagrams are generated, Feynman
graphs are drawn on the output papers and the program components of Feynman
amplitudes are written on an indicated file with several members.

156 CHAPTER 4. HOW TO USE GRACE SYSTEM

~
//XXXXG JOB CLASS=M,REGION=4096K,MSGLEVEL=1
//JOBPROC DD DSN=MLIB.GRACE.Vyymmdd.CNTL,DISP=SHR
// EXEC #GRACE
e e
//* PARTICLE TABLE
//*GENFGR. INTBL DD DSN=MLIB.GRACE.Vyymmdd.DATA(PTCLTBLO) ,DISP=SHR
[K m
//* INPUT DATA
//GENFGR.SYSIN DD DSN=MLIB.GRACE.Vyymmdd.DATA(D5120) ,DISP=SHR
// DD DSN=MLIB.GRACE.Vyymmdd.DATA (DEND) ,DISP=SHR
[K m
//* OUTPUT DATA OF CREATED GRAPHS
//*GENFGR.0UTDS DD DSN=userid.@.D5120.DATA,
/ /% DISP=(NEW,CATLG) ,UNIT=SYSDA,SPACE=(TRK, (2,2) ,RLSE),
//* DCB= (RECFM=FB,LRECL=80,BLKSIZE=3120)
J R
//* CREATE FILE FOR OUTPUT FORTRAN SOURCE CODE
//CREATE.NEWDS DD DSN=userid.@.D5120.FORT77,
// DISP=(NEW,CATLG) ,UNIT=SYSDA,SPACE=(TRK, (4,4,4)),
// DCB=(RECFM=FB, LRECL=80,BLKSIZE=3120)
J R
//* CREATE FORTRAN SOURCE CODE
//GENFORT.FTO5F001 DD *
userid.@.D5120.FORT77
//
L Source list 4.2 JCL for the graph generation and source generation
/

A template of this JCL is stored in the file “MLIB.GRACE.Vyymmdd .CNTL (GENALL) .”
If graphs are not required to draw, a catalogued procedure #NODRAW is to be used
instead of #GRACE.

4.2.2 Generation of library

A member #GENLIB in the output file is automatically generated, where a JCL for gen-
erating library for this process is. This library for the amplitude calculation
(userid.@.D5120.L0AD for example) will be used for the gauge invariance test, inte-
gration and event generation.

4.2.3 Test of the generated source code

A member #TEST, which is a JCL for a testing program, is automatically generated.
This JCL is for the execution of main program TEST which is used to check the generated
amplitudes at a point in the integration volume. The user is recommended to confirm
the gauge invariance and Lorentz frame independence before making the integration
by BASES. Before submitting the job, one has to prepare the subroutines KINIT and
KINEM and to fix their filenames in the JCL.

4.2. RUNNING ON FACOM

157

The main program TEST calls the subprograms USERIN and FUNC, which all the
histogram packages. Since the histograms in this test have no meaning, we use dummy

library for them, which is stored in the file MLIB.GRACE. Vyymmdd . PROGS (BDUMMY).

4 N
//XXXXG JOB CLASS=M
//* MLIB.GRACE.Vyymmdd
// EXEC FORT7CL,
// PARM.FORT=’0PT(3) ,GOSTMT, NAME, NONUM, NOSTATIS’ ,
// PARM.LKED="NOMAP ,NOLIST,NCAL,ALIAS’
//FORT.SYSINC DD DSN=userid.@.D5120.F0ORT77,DISP=SHR
//FORT.SYSIN DD DSN=userid.@.D5120.FORT77 (AMPARM) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AMPTBL) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AMPSUM) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AMPORD) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (SETMAS) ,DISP=SHR
//*
// DD DSN=userid.@.D5120.FORT77 (AMO0OO1) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AMO002) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AMO0O03) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AMO004) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AMOOO5) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AMO0O0O6) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AMOOO7) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AMO0O08) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AMO009) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AMO010) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AMOO11) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AMO012) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AMO013) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AMO0O14) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AMO015) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AMO0O16) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AMO017) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AMO018) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AMO019) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AMO020) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AM0021) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AM0022) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AM0023) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AM0024) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AMO025) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AMO026) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AMO027) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (AMO028) ,DISP=SHR
//*
//LKED.SYSLMOD DD DSN=userid.@.D5120.L0OAD,
// DISP=(NEW,CATLG,DELETE) ,
// SPACE=(TRK, (007,2,015) ,RLSE)

L Source list 4.3 JCL for making the library for amplitude calculation)

158

CHAPTER 4. HOW TO USE GRACE SYSTEM

~
//XXXXT JOB CLASS=M
//* MTAK.GRACE.V920605.DATA
// EXEC FORT7CLG,
// PARM.FORT="0PT(3) ,GOSTMT, SOURCE ,NONUM,NOSTATIS’,
// PARM.LKED=’"NOMAP,NOLIST’
//FORT.SYSINC DD DSN=userid.@.D5120.FORT77,DISP=SHR
//FORT.SYSIN DD DSN=userid.@.D5120.FORT77 (TEST) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (FUNC) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (USERIN) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (USROUT) ,DISP=SHR
//* DD DSN=userid.@.D5120.FORT77 (SETMAS) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (KINIT),DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (KINEM) ,DISP=SHR
//*
// DD DSN=MLIB.GRACE.Vyymmdd.PROGS(BDUMMY) ,DISP=SHR
//LKED.SYSLIB DD
// DD DSN=userid.@.D5120.L0AD,DISP=SHR
// DD DSN=MLIB.GRACE.Vyymmdd.LOAD,DISP=SHR
//
L Source list 4.4 JCL for the gauge invariance test
/

4.2.4 Numerical integration

JCL for the numerical integration is generated in a member #INT, by which the numer-
ical integration over the phase space cab be performed by BASES. Before integration,
the following points are to be checked:

1)

Include file INCLH
Set the numbers of histograms and scatter plots in the include file INCLH as
described in section 3.5.5.

Preparation of the subprograms USERIN and FUNC
Their specifications are given in sections 3.5.3 and 3.5.4.

Preparation of the kinematics routines

In the GRACE system, KINIT and KINEM are standard subroutine names for initial-
ization and calculation of the kinematics, respectively. Their specifications are
given in section 4.3.

Probability information

When event generation is considered, a file for the probability information must
be defined in the logical unit number 23. For the first integration, this file
(‘userid.PROCESS.DATA’ as an example) should be created. For the second
or later use, this file should be use by allocating it as described in the example
of JCL.

If only the result of integration is required, this file can be defined as the dummy.

4.2. RUNNING ON FACOM

5) Job parameters

The job parameters described in section 3.5.1, are given as the data cards.

//XXXXI JOB CLASS=V

//* MLIB.GRACE.Vyymmdd

// EXEC FORT7CLG,

// PARM.FORT=’0PT(3) ,GOSTMT, SOURCE , NONUM, NOSTATIS’ ,
// PARM. LKED="NOMAP , NOLIST’

//FORT.SYSINC DD DSN=userid.@.D5120.FORT77,DISP=SHR
//FORT.SYSIN DD DSN=userid.@.D5120.FORT77 (MAINBS) ,DISP=SHR

@
// DD DSN=userid.@.D5120.FORT77 (USERIN) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (FUNC) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (KINIT) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (KINEM) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (USROUT) ,DISP=SHR
//*
//LKED.SYSLIB DD
// DD DSN=userid.@.D5120.L0AD,DISP=SHR
// DD DSN=MLIB.GRACE.Vyymmdd.LOAD,DISP=SHR
// DD DSN=MLIB.BASES50.L0OAD,DISP=SHR
//G0.SYSIN DD *
1,1 LOOP MIN AND MAX
-4 Print Flag
0 Flag
120.0 CPU Time in Minutes
/%

//G0.FT23F001 DD DUMMY

//* For the second or later use

//*G0.FT23F001 DD DSN=userid.PROCESS.DATA,DISP=SHR

//* For the first use

//*G0.FT23F001 DD DSN=userid.PROCESS.DATA,DISP=(NEW,CATLG,DELETE),
//* SPACE=(TRK, (5,5) ,RLSE),

//* DCB=(RECFM=VBS ,BLKSIZE=23476)

Source list 4.5 JCL for the numerical integration by BASES
-

~

4.2.5 Event generation

159

A JCL for the event generation is also generated by GRACE. Before running the event

generation, the following items are considered:

1) Include file INCLH

The numbers of histograms and scatter plots should be set in the include file
INCLH, whose numbers must be greater than or equal to those defined in BASES.

2) Subroutines SPINIT, SPEVNT and SPTERM

These routines are called by SPRING, whose specifications are given in section

3.6.3.

160 CHAPTER 4. HOW TO USE GRACE SYSTEM

3) Probability information file
This file should be prepared by BASES, which is read from the logical unit number
23.

4) Input parameters
At the beginning of the event generation, the number of events and computing
time limit are read from the logical unit number 5.

4 N
//XXXXS JOB CLASS=V

/1% MLIB.GRACE.Vyymmdd

// EXEC FORT7CLG,

// PARM.FORT="0PT(3) ,GOSTMT , SOURCE , NONUM, NOSTATIS ,

// PARM.LKED="NOMAP , NOLIST’

//FORT.SYSINC DD DSN=userid.@.D5120.FORT77,DISP=SHR
//FORT.SYSIN DD DSN=userid.@.D5120.FORT77 (MAINSP) ,DISP=SHR

e
// DD DSN=userid.@.D5120.F0RT77 (USERIN) ,DISP=SHR
// DD DSN=userid.@.D5120.F0RT77 (FUNC) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (KINIT) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (KINEM) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (SPINIT) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (SPEVNT) ,DISP=SHR
// DD DSN=userid.@.D5120.FORT77 (SPTERM) ,DISP=SHR
//*
//LKED.SYSLIB DD
// DD DSN=userid.@.D5120.L0AD,DISP=SHR
// DD DSN=MLIB.GRACE.Vyymmdd.LOAD,DISP=SHR
// DD DSN=MLIB.BASES50.L0AD,DISP=SHR
//G0.SYSIN DD *
10000 Number of events
1.0 CPU Time in Minutes
/*

//G0.FT23F001 DD DSN=userid.PROCESS.DATA,DISP=SHR,LABEL=(,,,IN)

Source list 4.6 JCL for the event generation by SPRING

4.3. RUNNING ON PARALLEL COMPUTERS 161

4.3 Running on parallel computers

We have tested the BASES of GRACE system on parallel computers (INTEL iPSC/860,
nCUBE 2 and Fujitsu AP1000). In this section, we describe how to execute the nu-
merical calculation. We prepare the BASES library for these parallel computers. In
particular we assume we use INTEL iPSC/860, because this machine is most powerful
one among these three machines we used. User can use other parallel computers in the
similar way.

As a remote host computer for INTEL iPSC/860 the SUN SPARC workstation is
used. On this remote host computer, the cross-compiler and various software to use
INTEL iPSC/860, are installed. Therefore user only login into this remote machine
and can use INTEL iPSC/860.

At the first time user should add the following statement in the .cshrc.

setenv GRACEDIR /user/local/grace

set path=($path $(GRACEDIR)/bin)

setenv IPSC_XDEV /usr/ipsc/XDEV/R3.0

set path=($path /usr/ipsc/bin $(IPSC_XDEV)/i860/bin.sun4)

$ (GRACEDIR) /bin is a subdirectory where the executables for GRACE has been installed.
Last 2 lines is required in order to create the proper environment for usage of INTEL
iPSC/860 itself.

It is recommended to create a new directory for the calculation of one physical
process. For the process ete™ — WTW v a directory eewwa is created and move to
the directory:

grace), mkdir eewwa
grace) cd eewwa

User can perform the following steps using the commands installed on this UNIX
machine itself.

e Generation Feynman graph
e Drawing Feynman graph
e Generation source code

See sections 4.1.1, 4.1.2 and 4.1.3.

4.3.1 Command summary for INTEL iPSC/860

In this subsection, we summarize the commands for INTEL iPSC/860.

162 CHAPTER 4. HOW TO USE GRACE SYSTEM

Command Invocation Description

cubeinfo -n Displays cube ownership information.
getcube [-c cubename] [-t cubetype] | Allocate a cube, and make it
the currently attached cube.

load [-c cubename] filename Loads a user process into the cube.

waitcube [-c cubename] Wait for process on node to finish before
proceeding.

killcube [-c cubename] Kill node process.

relcube [-c cubename] Release a cube.

If user create the executable int.intel, user type as follows.
grace/, getcube -t 16;load int.intel;waitcube;killcube;relcube

In this case, user allocates 16 nodes.

4.3.2 Makefile

The command ”genfort” also generates the makefile. The libraries BASES/SPRING,
interface to CHANEL and CHANEL are stored in the directory GRACELDIR. The objects
commonly used both in BASES and SPRING are defined by macro name 0BJS, which is
referred in the later description.

4 I

SHELL = /bin/csh

INTELHOME = /usr/ipsc/XDEV/R3.0

FC = if77

FFLAGS = -01 -Knoieee

LD = 14860

AS = as860

LIBPATH = $(INTELHOME)/i860/1ib-coff

#

GRACELDIR = /users/packages/grace/lib/intel

#

BASESLIB = bases

CHANELLIB = chanel

BDUMMLIB = bdummy

#

0BJS = userin.o amparm.o \
func.o amptbl.o ampsum.o ampord.o \
usrout.o kinit.o kinem.o setmas.o \
am0001.0 am0002.0 am0003.0 am0004.o0 \
am0005.0 am0006.0 am0007.0 am0008.o0 \
am0009.0 am0010.0 am0011.0 am0012.0 \
am0013.0 am0014.0 am0015.0 am0016.0 \
am0017.0 am0018.0 am0019.0 am0020.0 \
am0021.0 am0022.0 am0023.0 am0024.0 \
am0025.0 am0026.0 am0027.0 am0028.o

Source list 4.7 Makefile for INTEL
continue to the next page

_ /

4.3. RUNNING ON PARALLEL COMPUTERS

163

a .

INT = int.intel

INTOBJ = mainbs.o

SPRING = spring.intel

SPOBJS = mainsp.o spevnt.o spinit.o spterm.o

TEST = test.intel

TESTOBJ = test.o

#

all: $ (INT) $(SPRING)

#

$ (INT) : $ (INTOBJ) $(0BJS) $(GRACELDIR)/1ib$ (BASESLIB).a \
$ (GRACELDIR) /1ib$ (CHANELLIB) .a
$ (FC) $(INTOBJ) $(0BJS) -o $(INT) -L$(GRACELDIR) \
-1$(BASESLIB) -1$(CHANELLIB) $(FFLAGS)

$ (SPRING) : $(SP0OBJS) $(0BJS) $(GRACELDIR)/1ib$(BASESLIB).a
$(FC) $(SPOBJS) $(0BJS) -o $(SPRING) -L$(GRACELDIR) \
-1$(BASESLIB) -1$(CHANELLIB) $(FFLAGS)

#

test: $ (TEST)

#

$ (TEST) : $(0BJS) $(TESTOBJ) $(GRACELDIR)/1ib$(BDUMMLIB).a \
$ (GRACELDIR)/1ib$ (CHANELLIB) .a
$(FC) $(TESTOBJ) $(0BJS) -o $(TEST) -L$(GRACELDIR) \
-1$(BDUMMLIB) -1$(CHANELLIB) $(FFLAGS)

#

clean:
rm -f *.o $(INT) $(SPRING) $(TEST)

.f.o
$(FC) $(FFLAGS) -c $<

g Source list 4.7 Makefile for INTEL

J

The macro names INT and INTOBJ define the executable and the object of the main
program for the integration, respectively. Similarly the macro names SPRING, SPOBJS,
TEST and TESTOBJ are defined.

When the gauge invariance is tested by the generated source, subroutines USERIN
and FUNC are called in the main program, which call the histogram packages. Since the
histogram has no meaning in the test, we use dummy library for them, which is stored
in the directory GRACELDIR. Therefore it is not necessary to change the subprograms
FUNC and USERIN for this test.

4.3.3 Test of the gauge invariance

The main program test.f is used to check the generated amplitudes at a point in the
integration volume as described in section 3.4. The executable test is created and is
executed by the following commands:

164 CHAPTER 4. HOW TO USE GRACE SYSTEM

grace), make -f makefile.intel test
grace’, getcube -t 1;load intel.test;waitcube;killcube;relcube

In this case, user allocates only one node and it is meaningless when use allocate multi
nodes because the parallel library is not used for test.

4.3.4 Integration

At first user should make the executables for the integration and event generation by
command make.

(:grace% make -f makefile.intel :j

Then the executables int.intel and spring.intel are created.
Before loading process into the node processors, user should prepare one file, that is,
“bases. jobprm” described in section 4.1.6. For integration

(:grace% getcube -t 16;load int.intel;waitcube;killcube;relcube :j

It is recommended to open the output file in the main program mainbs.f because
terminal I/O takes much time.

if(mynode() .eq. O) then
open(6,file=’bases.output’,status=’unknown’)
endif

In this program, the function “mynode” is a system call of INTEL iPSC/860 itself.
Then it returns node ID of calling process (0 to number of nodes — 1). In parallel
BASES, all output will be generated from only node ID=0.

In this case the output from BASES is written on the file bases.output.

Before termination of the integration job, BASES writes the probability information
on the file bases.data, which is used for the event generation.

4.3.5 Event generation

At the first time, user should create the input file where the the number of events and
computing time are specified. For instance, we assume this file name is “spring.parm”,
then user should insert two statements before CALL SPMAIN in the main program
mainsp.f.

4.3. RUNNING ON PARALLEL COMPUTERS 165

open(5,file=’spring.parm’,status=’0ld’)
open(6,file=’spring.output’,status=’unknown’)

Since the executable spring.intel is created by the make command already, the event
generation starts by

(:grace% getcube -t 1;load spring.intel;waitcube;killcube;relcube:j

The event generation will run until the given number of events are generated or
the computing time is exhausted. Since the spring library is not parallelized, so user
should allocate only one node.

Chapter 5

GRACE for a Vector computer

When some calculations are performed repeatedly, a vector computer displays its
power. Our problem, calculating the numerical value of differential cross section re-
peatedly very many times to obtain that of cross section, is just the case. It is possible
to shorten the execution time of the integration by using the vector computer. In order
to make the execution of program fast with the vector computer, a vectorizable program
has to be written, which is interpreted into vector operations by a compiler. When the
REDUCE system was used for taking trace of y-matrices, the vectorizable program was
used to be made by hand or by using a program package SPROC Ref.[9]. However, it
is now very easy for us to use the vector computer because GRACE system can also
produce a vectorizable program.

This chapter is devoted to the GRACE system for the vector computer and divided
into the following sections:

(1) Generated source code by GRACE
GRACE system can generate subprograms for BASES and SPRING in a vectorizable
form. They are summarized in section 5.1.

(2) BASES on a vector computer
The program structure of vector BASES and its usage are described in section 5.2.

(3) SPRING on a vector computer
A vector version of SPRING is now available. In section 5.3, its algorithm and
usage are described.

When the numerical calculation of differential cross section takes very much time,
even SPRING takes also much time for generating events. In our example of the process
ete™ — WTW ™+, consisting of 28 Feynman graphs, generation of 10k events takes a
comparable computing time to the integration by BASES. We consider a process with
more graphs, more computing time is required both for the integration and event gen-
eration. This may easily occur in use of GRACE system because it generates everything
automatically except for the kinematics.

166

5.1. GENERATED SOURCE CODE BY GRACE 167

5.1 Generated source code by GRACE

GRACE generates three kinds of source codes for the vector computer. The first is a set
of program components for the amplitude calculation, the second for the integration
by vector BASES and the third for the event generation by vector SPRING.

Some of these program components are identical to those for the scalar computer,
which are indicated by “S” in the following tables, while the program components with
“V” are special versions for the vector computer. Since almost all components used
in BASES are needed in SPRING, they are appeared in the both items. The program
components for the vector BASES and SPRING in the last two items are described later
in the relevant sections of this chapter.

The interrelation among these subprograms is shown in figure 5.1, where those
subprograms in the white box are automatically generated by GRACE, while those
in the shaded box are already contained in other program packages BASES/SPRING,
interface program library to CHANEL, and program package CHANEL.

4 M

Fig. 5.1 Relation among the generated subprograms

N)

1) a set of program components for amplitude calculation

168

SETMAS
AMPARM
AMPTBL
AMPSUM
AMnnnn

AMPORD
INCL1

INCL2
INCLVS
TESTV

subroutine
subroutine
subroutine
subroutine
subroutine

subroutine
include file

include file
include file
main

S << Wwn

v
v

CHAPTER 5. GRACE FOR A VECTOR COMPUTER

Definition of mass and decay width of particle.
Definition of coupling constants and others.

Call AMnnnn to calculate amplitudes.

Amplitudes are summed after being squared.
Calculate amplitude of the nnnn-th graph, where
the number nnnn of these routine name is equal to
the graph number.

Arranges amplitudes.

Define the common variables for masses, amplitude
tables etc.

Define the work space for AMPTBL.

Define the vector length.

Main program for testing gauge invariance.

Among the above components, only the include file INCLVS has to be finalized
by the user, while the others can be used as it is.

2) a set of program components for the integration by vector BASES

MAINVB
USERIN
KINIT

VBFNCT

KINEM

USROUT
INCLVS
INCLVB
INCLH

main

subroutine
subroutine
subroutine

subroutine

subroutine
include file
include file
include file

v

S
S
v

<

n o< n

Main program for the integration.

Initialization of BASES and user’s parameters.
Initialization of kinematics.

Calculate the numerical values of differential cross
section.

To derive particle four momenta from the integra-
tion variables.

Print the amplitude summary table.

Define the vector length.

Define the common for integration variables etc.
Define the histogram buffer.

3) a set of program components for the event generation by vector SPRING

MAINVS
USERIN
KINIT

VBFNCT

KINEM

INCLVS
INCLVB
INCLH

SPINIT
SPEVNT
SPTERM

main

subroutine
subroutine
subroutine

subroutine

include file
include file
include file
subroutine
subroutine
subroutine

v

S
S
v

<l

nshng<g

Main program for the event generation.
Initialization of BASES and user’s parameters.
Initialization of kinematics.

Calculate the numerical values of differential cross
section.

To derive particle four momenta from the integra-
tion variables.

Define the vector length.

Define the common for integration variables etc.
Define the histogram buffer.

Initialization routine for user’s purpose.

To save four vectors on a file.

Termination routine for user’s purpose.

5.1. GENERATED SOURCE CODE BY GRACE 169

5.1.1 Include file INCL1

A remarkable difference between the vector program and the scalar one is appeared
in the include file INCL1, shown in the source list 5.1. All variables relevant to the
amplitude calculation are arrays with an additional dimension of the vector length
NSIZE in the vector program.

Examples:
Variables for the Scalar Variables for the Vector COMMON
AG(0:LAG-1,NGRAPH) = AG(NSIZE,O0:LAG-1,NGRAPH) /AMGRPH/
PE0001 (4) = PEO001(NSIZE,4) /AMEXTR/

PPROD (NEXTRN,NEXTRN) = PPROD(NSIZE,NEXTRN,NEXTRN) /AMEXTR/

The vector length NSIZE is to be defined in the include file INCLVS, where a state-
ment

PARAMETER (NSIZE = *¥x)

is. One has to determine NSIZE as described in section 5.2.

4 ™
PARAMETER (LOUTGO = 2, LINCOM = 1)
PARAMETER (LANTIP = -1, LPRTCL = 1)
PARAMETER (LSCALR = 1)
PARAMETER (LEPEXA = 2, LEPEXW = 3, LEPEXZ = 3, LEPEXG = 2)
PARAMETER (LEPINA = 4, LEPINW = 4, LEPINZ = 4, LEPING = 3)
PARAMETER (LEXTRN = 2, LINTRN = 4)
* Table of amplitudes
PARAMETER (NGRAPH = 28, NEXTRN = 5, LAG = 72)

PARAMETER (NGRPSQ = NGRAPH*NGRAPH)

COMMON /AMSLCT/JSELG(NGRAPH), JGRAPH, JHIGGS, JWEAKB
COMPLEX*16 AG, APROP

COMMON /AMGRPH/AG(NSIZE,O:LAG-1,NGRAPH) ,APROP(NSIZE,NGRAPH),
& ANCP (NSIZE,NGRAPH) ,ANSP (0:NGRAPH),
& CF (NGRAPH,NGRAPH) , IGRAPH(NGRAPH)

* Masses and width of particles
COMMON /AMMASS/AMWB,AMZB,AMAB, AMXB, AMX3,AMPH, AMLU, AMNE , AMNM, AMNT,

& e e
COMMON /AMGMMA/AGWB,AGZB,AGAB,AGXB,AGX3,AGPH, AGLU, AGNE, AGNM, AGNT,
&
* Coupling constants
COMMON /AMCPLC/CZWW , CAWW ,CWWAA ,CWWZA s
&

Source list 5.1 The content of include file INCL1

continue to the next page

170 CHAPTER 5. GRACE FOR A VECTOR COMPUTER

4 N

* Momenta of external particles
COMMON /AMEXTR/PE0001(NSIZE,4) ,PE0002(NSIZE,4),

& PEOOO3(NSIZE,4) ,PE0O004 (NSIZE,4),
& PEOOO5(NSIZE,4),
& PPROD(NSIZE,NEXTRN, NEXTRN)

* Switch of gauge parameters
COMMON /SMGAUS/IGAUOO,IGAUAB,IGAUWB,IGAUZB,IGAUGL
COMMON /SMGAUG/AGAUGE (0:4)
* Normalization
COMMON /SMDBGG/FKNORM,FKCALL ,NKCALL
* Calculated table of amplitudes
COMMON /SMATBL/AV, LT, INDEXG
COMPLEX*16 AV(NSIZE,0:LAG-1)
INTEGER LT(0:NEXTRN), INDEXG(NEXTRN)
* For external particles
COMMON /SMEXTP/

& PS0001, EWO001, CEOO0O1,

& PS0002, EW0002, CE0002,

& EP0O003, EWO0003,

& EP0004, EW0004,

& EPO005, EW0005

REAL=*8 PS0001 (NSIZE,4,2), EWO001(NSIZE,1)

COMPLEX*16 CE0001 (NSIZE,?2,2)

REAL=*8 PS0002(NSIZE,4,2), EWO002(NSIZE,1)

COMPLEX*16 CEO002(NSIZE,2,2)

REAL*8 EPO0O03(NSIZE,4,LEPEXW), EWO003(NSIZE,LEPEXW)

REAL=*8 EP0004 (NSIZE,4,LEPEXW), EW0004 (NSIZE,LEPEXW)

REAL*8 EPO005 (NSIZE,4,LEPEXA), EWO005(NSIZE,LEPEXA)
g Source list 5.1 The content of include file INCL1)

5.1.2 Subroutine AMPTBL

Another difference between the scalar and the vector versions can be seen, for example,
in the subprogram AMPTBL, shown in the source list 5.2.

i) At the first stage of amplitude calculation, the subroutine SMEXTF is called for
each external fermion and SMEXTV for each vector particle. They construct tables
about the external lines necessary for the succeeding calculation.

After the first call of SMEXTF, the variable EW0001 (1) is set equal to “1”, which
corresponds to the particle (electron). EW0002(1) is set to “—1” after the second
call, which means this particle is the anti-particle (positron).

Then SMEXTV is called twice with mass of AMWB, which constructs tables of the
external W+ particles. And finally SMEXTV is called with mass of AMAB for the
photon (See section 7.2).

5.1.

GENERATED SOURCE CODE BY GRACE 171

-

N

SUBROUTINE AMPTBL (NSAMPL)
** 5120 E+ E- => W+ W- A TREE
IMPLICIT REAL*8(A-H,0-Z)

INCLUDE (INCLVS)
INCLUDE (INCL1)
INCLUDE (INCL2)

JGRAPH = 0O

* External lines
CALL SMEXTF (NSAMPL,LINCOM, AMEL,PE0001,PS0001,CE0001)
DO 101 J = 1 , NSAMPL
EW0001(J,1) = LPRTCL
101 CONTINUE
CALL SMEXTF (NSAMPL,LOUTGO, AMEL ,PE0002,PS0002,CE0002)
DO 102 J = 1 , NSAMPL
EW0002(J,1) = LANTIP
102 CONTINUE
CALL SMEXTV(NSAMPL ,LEPEXW,AMWB,PE0003,EP0003,EW0003,IGAUWB)
CALL SMEXTV(NSAMPL ,LEPEXW,AMWB,PE0004,EP0004,EW0004,IGAUWB)
CALL SMEXTV(NSAMPL,LEPEXA,AMAB,PE0005,EP0005,EW0005,IGAUAB)

* Graph NO. 1- 1 1
IF (JWEAKB.NE.O) THEN
IF (JSELG(1) .NE.O) THEN

JGRAPH = JGRAPH + 1
IGRAPH(JGRAPH) = 1
CALL AMOOO1 (NSAMPL)
ENDIF

ENDIF

* Graph NO. 28 - 1 (28)
IF (JWEAKB.NE.O) THEN
IF (JSELG(28).NE.O) THEN

JGRAPH = JGRAPH + 1
IGRAPH(JGRAPH) = 28
CALL AMO028(NSAMPL)
ENDIF

ENDIF

RETURN

END

Source list 5.2 An example of AMPTBL
J

ii) The subroutine AMnnnn is called for calculating amplitude of the nnnn-th graph.
Since there are 28 Feynman graphs for the process ete”™ — WW ~, 28 subrou-

172 CHAPTER 5. GRACE FOR A VECTOR COMPUTER

tines, AMO0O1, ..., and AM0028, are called successively.

All subroutines including AMPTBL itself have the variable NSAMPL as the first argu-
ment, which is the real vector length determined by BASES/SPRING. When the case of
NSIZE < NSAMPL occurs, the program is terminated after printing an error message.

5.2 BASES on a vector computer
Basic idea for vectorizing the integration program BASES is the following:
(A) Initialization

(1) At the beginning of integration the subprogram USERIN is called, where
the number of wild variable N,;4 and that of sampling points per iteration

N f;”me;,e are given together with other parameters.

(2) From these numbers N, ;4 and N, fjﬁ;e the number of hypercubes N is
determined by the algorithm described in subsection 2.7. The hypercubes
are divided into N, groups, each of which has Niiar X Newve /Ny (= Nsample)

sampling points per iteration. !

One reason for this grouping hypercubes into N, groups is applicability to
a parallel vector computer and another is to keep program size as small as
possible on the vector computer.

(B) Calculation of the estimate of integral and its error for one iteration

(1) The random numbers are generated for all sampling points of one group by
a vectorized random number generator. As we have Nyqmpe sampling points
a group and Ny, integration variables, Nygmpie X Ngim random numbers are
generated.

(2) They are translated into the integration variables, which consist of Nggmpie
sets of Ny, dimensional variables, where a set corresponds to a sampling
point.

(3) The Nyampie sets of variables are given at the same time to the subprogram
VBFNCT, where Nggmpie values of the integrand are calculated by a vectorized
program.

(4) Steps (B.1) ~ (B.3) are repeated until the estimates of all groups are finished.
(5) Sums of estimate and variance are taken over all groups and the estimated

error is also calculated for the iteration.

(C) The program flows of the grid optimization and integration steps are identical to
those in the scalar version.

!The maximum number of Nsample is taken as that for NSIZE in the include file INCLVS.

-

5.2. BASES ON A VECTOR COMPUTER 173
~

Fig. 5.2 Structure of the vector version BASES
/

174 CHAPTER 5. GRACE FOR A VECTOR COMPUTER

Since grouping hypercubes is carried out by the identical algorithm to the parallel
computer, the relation between the numbers N and N,.q described in subsection
2.7 is identical to that between the numbers Ny and N,.

5.2.1 Structure of vector BASES

The program structure of vector version BASES is shown in figure 5.2, where the program
components with in the white box generated by GRACE and the others are in the
libraries.

From the integration program, the subprograms USERIN, VBFNCT and USROUT are
called, which are the interfaces to the user program. The specifications to write these
subprograms are described in subsection 5.2.2.

The subroutine VBMAIN controls the global flow of integration, like the initialization
stage, the grid optimization step, the integration step and termination stage. This
global flow is exactly identical to that for the scalar version described in subsection
3.5.2.

The grid optimization and integration steps are controlled by VBASES, where the
distinction between these two steps is done by the job flag as mentioned in subsection
3.5.1.

5.2.2 Subprograms to be prepared

For the integration by BASES the main program MAINVB and the subprograms USERIN,
VBFNCT, USROUT should be finalized by the user whose templates are generated by
GRACE.

In USERIN, the subroutines SETMAS, AMPARM and KINIT are called, for which the
same routines as on the scalar computer can be used. For USROUT the routine used on
the scalar computer is also applicable to the vector machine.

The subroutine VBFNCT, however, is not the function subprogram like FUNC on the
scalar machine, but must be written by a vectorizable code. Furthermore, it includes
the kinematics routine KINEM, which should be vectorized to obtain a high performance
of the vector computer.

Main program MAINVB

MAINVB is given as in the form of the source list 5.2.

5.2. BASES ON A VECTOR COMPUTER

/
IMPLICIT REAL*8 (A-H, 0-Z)

* Arrays for VBASES
INCLUDE (INCLVB)
COMMON /VBCNTO/ KG(NSIZE,MDIM), IA(NSIZE,MDIM)
COMMOM /VBRAND/ RX(NSIZE), NRN(NSIZE), LAB(NSIZE)
* Arrays for HISTOGRAM and SCAT_PLOT
INCLUDE (INCLH)
COMMON /PLOTB/ IBUF(281*NHIST + 2527*NSCAT + 281)

COMMON /HSTCNT/ IX(NSIZE), IY(NSIZE), IDFX(NSIZE)
* Arrays for CHANEL
PARAMETER (NWORD = 167)
COMMON /CHWORK/ WORKS (NSIZE,NWORD)
Control for number of nodes
COMMON /NINFO/ NODEID, NUMNOD, IPFLAG

*

NODEID
NUMNOD

0
16

CAL VBMAIN(MDIM, NSIZE, X, FX, WGT, IA, KG)

STOP
END

Source list 5.2 Main program MAINVB
o

COMMON /VBHIST/ IADX(NSIZE,NHIST+1), IADD(NSIZE,2,NSCAT)

/

175

The include file INCLVB is generated automatically by GRACE and its content is as

follows:

PARAMETER (MDIM = 4)
INCLUDE (INCLVS)
COMMON /VBVECT/ WGT(NSIZE), X(NSIZE,MDIM), FX(NSIZE)

where the include file INCLVS defines the vector length NSIZE in the following:

(: PARAMETER (NSIZE = 302)

)

The parameter NUMNQD is the number /N, mentioned at the beginning of this section.
The reason why this variable name is “number of nodes” is that when we use a parallel

vector computer the meaning of this variable becomes really the number of nodes.

The file INCLVS is also created automatically. The random numbers are generated
for Nsampie sampling points by the subprogram VBRNDM, and are transferred into Nygmpie
sets of integration variables in routine VBASES. Then they are given to the subprogram
VBFNCT, where the values of integrand are calculated at these sets of sampling points.

176 CHAPTER 5. GRACE FOR A VECTOR COMPUTER

Subroutine VBFNCT

In the subroutine VBFNCT the values of integrand are calculated for Nygmpie Sampling
points by a vectorizable code. In the source list 5.3 an example of this routine is given.
By comparing with the scalar version in section 3.5.4 we can see the difference between
the scalar and vector versions.

~
SUBROUTINE VBFNCT (NSAMPL)

IMPLICIT REAL*8(A-H,0-Z)

PARAMETER (MXDIM = 50)

COMMON / BASE1 / XL(MXDIM),XU(MXDIM),NDIM,NWILD,
& IG(MXDIM) ,NCALL

INCLUDE (INCLVB)

INCLUDE (INCL1)

COMMON /AMREG / MXREG

COMMON /AMSPIN/ JHS(NEXTRN), JHE(NEXTRN), ASPIN

REAL*8 ANSO(NSIZE)

* P : Table of four momenta

* PP : Table of inner products
REAL*8 P(NSIZE,4,NEXTRN) ,PP(NSIZE,NEXTRN,NEXTRN)
REAL*8 YACOB(NSIZE), DFX(NSIZE)

INTEGER NREG (NSIZE) , JUMP(NSIZE) ,L(NSIZE)
COMMON /SP4VEC/ VEC(NSIZE,4,NEXTRN)
REAL*8 DFT(NSIZE), RN(NSIZE)

* Initialization
DO 100 I = 1, NSAMPL
FX(I) = 0.0D0
NREG(I) =1
100 CONTINUE
Kinematics

DO 1000 IREG = 1, MXREG

CALL KINEM(NSAMPL, NEXTRN, P, PP, YACOB,NREG,IREG,JUMP)

IF(IREG .EQ. 1) THEN
DO 150 I = 1, NSAMPL
DFT(I) = 0.DO
150 CONTINUE

Source list 5.3 Subprogram VBFNCT
continue to the next page

5.2. BASES ON A VECTOR COMPUTER

177

-

DO 180 K

DO 180 J

DO 180 I

VEC(I,

CONTINUE
ENDIF

(S|

MXLOOP =0
DO 200 I =1,
DFX(I) = 0.
IF(JUMP(I)
MXLOOP
L(MXLOO

ENDIF

CONTINUE

IF(MXLOOP .LE

NSAMPL
DO

.EQ. 0) THEN
= MXLOOP + 1
P) = I

. 0) GO TO 1000

300

DO 300 I =1,
DO 300 J =1,

PE0001(J,I)
PE0002(J,I)
PE0003(J,I)
PE0004(J,I)

PE0005 (J,I)
CONTINUE

4
MXLOOP

P(L(D, I, 1)

P(L(J), I, 2)

P(L(D), I, 3)

P(L(D, I, 4

P(L(D, I, 5)

particles
1: EL-
2: EL+
3: WB+
4: WB-
5: AB

INITIAL

INITIAL

FINAL

FINAL

FINAL

LPRTCL

LANTIP

LPRTCL

LANTIP

LPRTCL

350

DO 350 K = 1
DO 350 J =1,
DO 350 I =1

PPROD(I, J, K) = PP(L(I), J, K)

CONTINUE

Source list 5.3 Subprogram VBFNCT

continue to the next page

178

CHAPTER 5. GRACE FOR A VECTOR COMPUTER

~

Amplitude calculation

CALL AMPTBL (MXLOOP)
CALL AMPSUM (MXLOOP,ANSO)
DO 400 I = 1, MXLOOP

DFX(L(I)) = ANSO(I)*YACOB(L(I))*ASPIN
ANSP(0) = ANSP(0) + WGT(L(I))*DFX(L(I))
FX(L(I)) = FX(L(I)) + DFX(L(I))

400 CONTINUE

*--- special t
* Save f

IF(IREG .EQ. 1) THEN
DO 420 K = 1, NEXTRN
DO 420 J =1, 4
DO 420 I = 1, MXLOOP
VEC(L(I),J,K) = P(L(I),J,K)
420 CONTINUE
DO 430 I = 1, NSAMPL
DFT(I) = DFX(I)
430 CONTINUE
ENDIF

reatment for SPRING ~--—--——"-"-"-"""""""""""""""""""""""""-——-
our momenta and probabilities of the region 1

For histograms and scatter plots

DO 45

CALL XVFILL(I, NSAMPL, X(1,I), DFX)
450 CONTINUE
K=0
DO 500 I =1, NDIM - 1
DO 500 J = I + 1, NDIM
K=K+ 1
CALL DVFILL(K, NSAMPL, X(1,I), X(1,J), DFX)
500 CONTINUE

0I=1, NDIM

For summary tables

DO 600
DO 600
ANSP

600 CONTINUE

1000 CONTINUE

IGR = 1, JGRAPH
I =1, MXLOOP
(IGR) = ANSP(IGR)

+ WGT(L(I))*YACOB(L(I))*ASPIN*ANCP(L(I),IGR)

Source list 5.3 Subprogram VBFNCT

continue to the next page

5.2. BASES ON A VECTOR COMPUTER 179

4 M

DO 700 I 1, NSAMPL
NKCALL = NKCALL + 1
IF(NKCALL .GT. 10000) THEN

NKCALL = NKCALL - 10000
FKCALL = FKCALL + 10000
ENDIF
700 CONTINUE
*=== Special treatment for SPRING (in two valued function case) ======
* Put the final 4 vectors into the arrays VEC()

*

CALL VBRNDM(1, NSIZE, NSAMPL, RN)

DO 800 I = 1, NSAMPL
L(I) =0
800 CONTINUE
MXLOOP =0
DO 820 I = 1, NSAMPL

IF(FX(I) .GT. 0.DO) THEN
IF(DFT(I)/FX(I) .LT. RN(I)) THEN
MXLOOP = MXLOOP + 1
L(MXLOOP) = I
ENDIF
ENDIF
820 CONTINUE

DO 850 K = 1, NEXTRN
DO 850 J 1, 4
DO 850 I = 1, MXLOOP
VEC(L(I),J,K) = P(L(I),J,K)
850 CONTINUE

RETURN
END

Source list 5.3 Subroutine VBFNCT

o J
The structure of the subprogram VBFNCT is as follows:

(1) The number Nygmpie is given by the argument of the subprogram and the numer-
ical values of the integration variables are given by X(NSIZE,MDIM) in common
/VBVECT/. The numerical values of integrand are to be stored in FX(NSIZE). The
other variables in the common /VBVECT/ are used in BASES and should not be
alter anywhere. The content of the include file INCLVB is as follows:

PARAMETER (MDIM = 4)
PARAMETER (NSIZE = 302)
COMMON /VBVECT/ WGT(NSIZE), X(NSIZE,MDIM), FX(NSIZE)

180

(2)

CHAPTER 5. GRACE FOR A VECTOR COMPUTER

The variables or arrays of P, PP, YACOB, NREG and JUMP have an additional di-
mension of the vector length NSIZE.
Examples:

Variables for the scalar Variables for the vector

P (4 ,NEXTRN) = P(NSIZE,4,NEXTRN)

YACOB = YACOB(NSIZE)

NREG = NREG(NSIZE)

In the subprogram KINIT, the multiplicity of kinematics function MXREG should
be set (See section 3.3.1). For our example of the process efe™ — WTW, as
we prepare a single valued function as the kinematics, then we set MXREG equal
to “1”. Furthermore, the values of integrand should be cleared and the variable
NREG should be initialized to be “1”.

DO 100 I =1, NSAMPL
FX(I = 0.0D0
NREG(I) = 1

100 CONTINUE

Kinematics and the gathering the points.

In the calculation of kinematics, there may be those sampling points which are
outside the kinematical boundary or some detector acceptance. The integrand
should not be calculated for these points. In such a case, the ”gathering and
scattering” method is recommended to use. To gather those sampling points,
which are in the boundary, the “list vector” is used. In the “list vector” L(3),
where the pointers only for those sampling points, which are in the boundary or
the flag JUMP(7) = 0, are stored and the kinematical variables, like four momenta,
are gathered into the first MXLOOP of an array PEnnnn(I,J), as shown below.

* Calculation of kinematics for NSAMPL points at the same time
CALL KINEM(NSAMPL, NEXTERN, P, PP, YACOB, NREG, IREG, JUMP)

MXLOOP = O
DO 200 I = 1, NSAMPL

DFX(I) = 0.0DO

IF(JUMP(I) .EQ. O) THEN

MXLOOP = MXLOOP + 1
L(MXLOOP) = I
ENDIF

200 CONTINUE

D030 I=1, 4
DO 300 J = 1, MXLOOP
PE0001(J,I) = P(L(J),I,1)

PE0005(J,I) = P(L(J),I,5)

5.2. BASES ON A VECTOR COMPUTER 181

300 CONTINUE

It is noted that the number of arguments of subroutine KINEM is different from
that for the scalar version.

Calculation of amplitudes

By gathering the sampling points in the arrays PEnnnn() and PPROD(), an effi-
cient amplitude calculation is realized.

Scatter the gathered points

To return the values of integrand to BASES, the gathered points should be scat-
tered in the order of the given sampling points. For this purpose we use the list
vector L(7), prepared in step (4).

DO 400 I = 1, MXLOOP

DFX(L(I))= ANSO(I)*YACOB(L(I))*ASPIN
ANSP(0) = ANSP(0) + WGT(L(I))*DFX(L(I))
FX(L(I)) = FX(L(I)) + DFX(L(I))

400 CONTINUE

Histogramming

To fill the histogram (scatter plot), the subroutine XVFILL (DVFILL) is called
as in the following way. The filling routines on the vector computer are different
from those on the scalar computer. The variables X(1,I) and X(1,J) are arrays,
which should be defined somewhere in VBFNCT and should not be the gathered
variables. An array DFX is assumed to be the storage of the values of integrand
for the scattered points as defined in the step (6).

CALL XVFILL(ID#, NSAMPL, X(1,I), DFX)
CALL DVFILL(ID#, NSAMPL, X(1,I), X(1,J), DFX)

It is noted that the array DFX is cleared at the step (3). Then those sampling
points which are out of kinematical boundary contribute to the histogram with
weight zero.

Subroutines for Kinematics

GRACE generates the program source code for the amplitude squared but does not for
the kinematics part. Therefore the kinematics routine should be vectorized by oneself.
Vectorization of a program is quite simple. The statement

A=B+C

is vectorized by rewriting as

DO 100 I
A(D
100 CONTINUE

1, L
B(I) + C(D)

182 CHAPTER 5. GRACE FOR A VECTOR COMPUTER

where L is the vector length. However, one should note the following points. Consider
an addition operator A,, which operates on two n-dimensional vectors z, y and returns
an n-dimensional vector z whose ith element has the value of the sum of the ¢th elements
of x and y:

z=A,(z,y), where z;=z;+y;, fori=1,..,n.

The parallel operation for each element does not always give the correct result even
though the code is vectorized. In the calculation of x; = a + z; o, for example, x3
should be determined before x5 = a+ x3 is calculated. Thus there should be no mixing
between input and output data in a vectorized program.

In the source list 5.4, an example of KINEM for the process efe” — WTW « is
shown, which is a vectorized code of that for the scalar machine given in section 3.3.

/
SUBROUTINE KINEM(NSAMPL, NEXTRN, PE, PP, YACOB, NREG, IREG, JUMP)

IMPLICIT REAL* 8(A-H,0-Z)
INCLUDE (INCLVB)
INTEGER NEXTRN
REAL*8 PE(NSIZE,4,NEXTRN), PP(NSIZE,NEXTRN,NEXTRN)
REAL*8 YACOB(NSIZE)
INTEGER NREG(NSIZE), IREG
INTEGER JUMP(NSIZE)
COMMON /AMCNST/ PI, PI2, RAD, GEVPB, ALPHA
* Masses and width of particles
COMMON /AMMASS/AMWB,AMZB,AMAB, AMXB,AMX3,AMPH, AMLU, AMNE , AMNM, AMNT,

& AMLD, AMEL , AMMU, AMTA , AMQU, AMUQ, AMCQ, AMTQ, AMQD, AMDQ,
& AMSQ, AMBQ, AMCP , AMCM, AMCZ , AMCA , AMGL

COMMON /AMGMMA/AGWB,AGZB,AGAB,AGXB,AGX3,AGPH,AGLU, AGNE, AGNM, AGNT,
& AGLD,AGEL,AGMU,AGTA,AGQU,AGUQ, AGCQ, AGTQ,AGQD,AGDQ,
& AGSQ,AGBQ,AGCP,AGCM, AGCZ,AGCA, AGGL

COMMON / ENRGY / S,W,E,P,P1P2,FACT

COMMON / TRNSF / YACO,EPSP,AP,XLOG

COMMON / KCUTS / RMN,RMX,ETH

COMMON / ACUTS / DELCUT,DLTCSG,DLTCSO,CSMX,CSMN

COMMON / MASS1 / EM,WM

COMMON / MASS2 / EM2,WM2

K kinem-2
Kinematics for the process
e-(P1) + e+(P2) -—-—> W-(Q1) + W+(Q2) + gamma(R)

(1) Frame of reference :
(a) Photon is along the z-axis.
(b) Initial e+ is in the x-z plane.

* X X X X *

Source list 5.4 An example of a vectorized code of KINEM

continue to the next page

5.2. BASES ON A VECTOR COMPUTER 183

4 N
* (2) Definition of variables :
* (a) Polar angle of e+ is CSG.
* (b) Photon energy is R.
* (c) Polar angle of W+ is CSO and
* azimuthal angle is PHI.
* (d) Energies of W- and W+ are Q10 and Q20.
* (e) Angle between e+ and W+ 1is CSTH.
* (3) Variable sequence : R --—> CSG ---> Q20 ---> PHI

REAL*8 R(NSIZE), DR(NSIZE), CSG(NSIZE), SNG(NSIZE), D1(NSIZE)
REAL*8 D2(NSIZE), ER(NSIZE), Q20MX(NSIZE),Q20MN(NSIZE)
REAL*8 DQ20(NSIZE),Q20(NSIZE), Q10(NSIZE), Q2(NSIZE), Q1(NSIZE)
REAL*8 CSO(NSIZE), SNO(NSIZE), CSPHI(NSIZE),SNPHI (NSIZE)
REAL*8 CSTH(NSIZE),D3(NSIZE), D4(NSIZE), P1Q2(NSIZE)
REAL*8 P2Q2(NSIZE),Q1Q2(NSIZE),P1Q1(NSIZE), P2Q1(NSIZE)
et Entry point ----------———-----—————————————
NCNT
DO 10 I = 1, NSAMPL
IF(IREG .LE. NREG(I)) THEN
JUMP(I) = 0
ELSE
NCNT = NCNT + 1
JUMP(I) = 1
ENDIF
10 CONTINUE
IF(NCNT .GE. NSAMPL) RETURN

1]
o

DO 100 I = 1, NSAMPL
IF(JUMP(I) .EQ. O) THEN
RR = RMX/RMN
R(I) = RMN*RR**X(I,1)
DR(I) = LOG(RR)/R(I)
ENDIF
100 CONTINUE

DO 150 I = 1, NSAMPL
IF(JUMP(I) .EQ. O) THEN
YA = EXP(2.DO*XLOG*(X(I,2) - 0.5D0))
CSG(I) = (ZZZ - 1.DO)/(ZZZ + 1.DO)*AP
SNG(I) = SQRT((1.DO - CSG(I))*(1.DO + CSG(I)))
D2K = APx(2.D0/(1.DO + ZZZ))
D1K = ZZZ*D2K
D1(I) = R(I)*P*D1K
D2(I) = R(I)*P*D2K
ENDIF
150 CONTINUE

Source list 5.4 An example of a vectorized code of KINEM

continue to the next page

N)

CHAPTER 5. GRACE FOR A VECTOR COMPUTER

DO 200 I = 1, NSAMPL
IF(JUMP(I) .EQ. O) THEN

CSOMX = 1.D0 - DLTCSO
RCS02 = (R(I)*CSOMX)#**2
WR =W - R(I)
ER(I) = E - R(I)
U = WR**2 - RCS02
v = WWR*ER(I)
D = RCS02*((W*ER(I))**2 - WM2+U)
SQD = SQRT(D)
Q20MX(I) = (V + SQD)/U
Q20MN(I) = (V - SQD)/U
ENDIF

200 CONTINUE
DO 250 I = 1, NSAMPL
IF(JUMP(I) .EQ. O) THEN

A = E - Q20MX(I)

B = E - Q20MN(I)

CA = Q20MX(I) - ER(I)

CB = Q20MN(I) - ER(I)

RX = B*CA/(CBxA)

DQ20(I) = LOG(RX)/(S*R(I))
ZZZ = A/CA*RX*xX(I,3)

XXX = R(I)*ZZZ/(1.DO + ZZZ)

Q20(I) = E - XXX
Q2(I) = SQRT((Q20(I) - WM)*(Q20(I) + WM))
Q10(I) = W - Q20(I) - R(I)
Q1(I) = SQRT((Q10(I) - WM)*(Q10(I) + WM))
ENDIF
250 CONTINUE
DO 300 I = 1, NSAMPL
IF(JUMP(I) .EQ. O) THEN
IF(Q20(I) .LT. ETH .OR. Q10(I) .LT. ETH) THEN
JUMP(I) =1
ENDIF
ENDIF
300 CONTINUE

DPHI = 2.DO*PI
DO 350 I = 1, NSAMPL
IF(JUMP(I) .EQ. O) THEN
€CS0(I) = (Wx(E - R(I) - Q20(I)) + R(I)*Q20(I))
/C Q2(I)*R(I))
SNO(I) = SQRT((1.DO - CSO(I))*(1.DO + CSO(I)))

CSPHI(I) = COS(DPHI*X(I,4))
SNPHI(I) = SIN(DPHI*X(I,4))
ENDIF

350 CONTINUE

Source list 5.4 An example of a vectorized code of KINEM

continue to the next page

5.2. BASES ON A VECTOR COMPUTER 185

DO 400 I = 1, NSAMPL

IF(JUMP(I) .EQ. O) THEN
CSTH(I) = CSO(I)*CSG(I) + SNO(I)*SNG(I)*CSPHI(I)
IF(CSTH(I) .GT. CSMX .OR. CSTH(I) .LT. CSMN) THEN

JUMP(I) =1

ENDIF

ENDIF

400 CONTINUE

DO 450 I = 1, NSAMPL
IF(JUMP(I) .EQ. O) THEN

Cs01 = - (R(I) + Q2(I)*CS0(I))/Q1(I)
IF(¢SO1 .GT. 1.DO - DLTCSO) THEN
JUMP(I) = 1
ENDIF
ENDIF
450 CONTINUE
C ___
DO 500 I = 1, NSAMPL
IF(JUMP(I) .EQ. O) THEN
€sQ = - (R(I)*CSG(I) + Q2(I)*CSTH(I))/Q1(I)
IF(¢SQ .GT. CSMX .OR. CSQ .LT. CSMN) THEN
JUMP(I) = 1
ENDIF
ENDIF
500 CONTINUE
DO 550 I = 1, NSAMPL
IF(JUMP(I) .EQ. O) THEN
COSDEL = (Q20(I)*Q10(I) - Wx(Q20(I)+Q10(I))+ E*W + WM2)
& /C Q2(I)*Q1(I))
IF(COSDEL. GT. DELCUT) THEN
JUMP(I) = 1
ENDIF
ENDIF
550 CONTINUE
C——— invariants

DO 600 I = 1, NSAMPL
IF(JUMP(I) .EQ. O) THEN
EPSQ = WM2/(Q20(I) + Q2(I))
D3(I) = R(I)*E/ER(I)*(EPSQ + Q2(I)*(1.DO + CSO(I)))
D4(I) = R(I)*(EPSQ + Q2(I)*(1.DO - €SO(I)))
P1Q2(I) = E*Q20(I) + P*Q2(I)*CSTH(I)
P2Q2(I) = E*Q20(I) - P*Q2(I)*CSTH(I)
Q1Q2(I) = Wx(E - R(I)) - WM2
P1Q1(I) = EM2 + P1P2 - D1(I) - P1Q2(I)
P2Q1(I) = EM2 + P1P2 - D2(I) - P2Q2(I)
ENDIF
600 CONTINUE

Source list 5.4 An example of a vectorized code of KINEM

continue to the next page

186

CHAPTER 5. GRACE FOR A VECTOR COMPUTER

* Table of four momenta.
* PE(I, J) : I=1->X,2->Y, ... 4 -> energy, of J-th particle.
DO 650 I = 1, NSAMPL
IF(JUMP(I) .EQ. O) THEN
* 2: EL+ INITIAL LANTIP
PE(I,1,2) = P*SNG(I)
PE(I,2,2) = 0.0DO
PE(I,3,2) = P*CSG(I)
PE(I,4,2) = E
* 1: EL- INITIAL LPRTCL
PE(I,1,1) = -PE(I,1,2)
PE(I,2,1) = -PE(I,2,2)
PE(I,3,1) = -PE(I,3,2)
PE(I,4,1) = PE(I,4,2)
ENDIF
650 CONTINUE
DO 700 I = 1, NSAMPL
IF(JUMP(I) .EQ. O) THEN
* 3: WB+ FINAL LPRTCL

PE(I,1,3)
PE(I,2,3)
PE(I,3,3)
PE(I,4,3)

PE(I,1,5)
PE(I,2,5)
PE(I,3,5)
PE(I,4,5)
ENDIF
700 CONTINUE

Q2(I)*SNO(I)*CSPHI (I)
Q2(I)*SNO(I)*SNPHI (I)
Q2(1)*CS0(1)
Q20(1)
5: AB FINAL LPRTCL
0.0DO0
0.0DO

= R(I)

R(I)

DO 750 I = 1, NSAMPL

IF(JUMP(I) .EQ.

PE(I,1,4)
PE(I,2,4)
PE(I,3,4)
PE(I,4,4)
ENDIF
750 CONTINUE

0) THEN
4: WB- FINAL LANTIP
PE(I,1,1)+PE(I,1,2)-PE(I,1,5)-PE(I,1,3)
PE(I,2,1)+PE(I,2,2)-PE(I,2,5)-PE(I,2,3)
PE(I,3,1)+PE(I,3,2)-PE(I,3,5)-PE(I,3,3)
Q10(I)

Source list 5.4 An example of a vectorized code of KINEM

continue to the next page

~

5.2. BASES ON A VECTOR COMPUTER 187

4 M

c-----—-—————--"-"-"-"-""-"--"————— invariants
* PP(I,J) = inner product between PE(*,I) and PE(*,J)

DO 800 I = 1, NSAMPL
IF(JUMP(I) .EQ. O) THEN
PP(I,1,1) = EM2
PP(I,1,2) = P1P2
PP(I,1,3) = P1Q2(I)
PP(I,1,4) = P1Q1(I)
PP(I,1,5) = D1(I)

PP(I,2,1) = P1P2
PP(I,2,2) = EM2
PP(I,2,3) = P2Q2(I)
PP(I,2,4) = P2Q1(I)
PP(I,2,5) = D2(I)

ENDIF

800 CONTINUE
DO 850 I = 1, NSAMPL

IF(JUMP(I) .EQ. O) THEN
PP(I,3,1) = P1Q2(I)
PP(I,3,2) = P2Q2(I)
PP(I,3,3) = WM2
PP(I,3,4) = Q1Q2(I)
PP(I,3,5) = D4(I)

PP(I,4,1) = P1Q1(I)
PP(I,4,2) = P2Q1(I)
PP(I,4,3) = Q1Q2(I)
PP(I,4,4) = WM2
PP(I,4,5) = D3(I)

PP(I,5,1) = D1(I)
PP(I,5,2) = D2(I)
PP(I,5,3) = D4(I)
PP(I,5,4) = D3(I)
PP(I,5,5) = 0.0DO
ENDIF
850 CONTINUE
C———— e Jacobian
DO 900 I = 1, NSAMPL
IF(JUMP(I) .EQ. O) THEN
YACOB(I) = FACT*DR(I)*(YACO*D1(I)*D2(I))
*(DQ20(I)*D3(I)*D4(I))*DPHI/2.DO
ENDIF
900 CONTINUE

RETURN
END

Source list 5.4 An example of a vectorized code of KINEM

188 CHAPTER 5. GRACE FOR A VECTOR COMPUTER

The structure of this example is as follows:

(1) The number of sampling point NSAMPL is given in the arguments of subroutine
KINEM. The arguments NREG and JUMP are now arrays.

(2) The variables, used several times in this program, like R, DR etc., are now arrays
to keep their values.

(3) At the beginning, the array JUMP (%) is initialized to be ”0”, when the condition
IREG < NREG (%) is satisfied. Otherwise, JUMP () is set to “1”.

(4) The kinematics is calculated only for those sampling points, each of which has
JUMP (z) = 0.

(5) When the i-th sampling point is out of the kinematical boundary, then the value
of JUMP (4) is set equal to “1”.

DO 300 I = 1, NSAMPL
IF(JUMP(I) .EQ. O) THEN
IF(Q20(I) .LT. ETH .OR. Q10(I) .LT. ETH) THEN

JUMP(I) =1
ENDIF
ENDIF
300 CONTINUE

(6) At last, the four momenta of external particles PEnnnn() and their inner prod-
ucts PP() are calculated only for the JUMP (i) = 0 sampling points.

5.3 Event generation

For a long time authors have never tried to develop a vector version of SPRING due to
such a prejudice that the vector computer is not suitable for the Monte Carlo event
generation. One reason, why we dare to make it, is to shorten the execution time
of the event generation. Another is the following. When we generate four vectors of
very complicated process, at first we integrate the differential cross section by BASES
on the vector computer, at second copy the probability information from the vector
computer to the scalar computer, and then generate four vector by SPRING on the
scalar computer. This procedure is not only complicated, but we also have to have
two kinds of subprograms FUNC and VBFNCT. This situation makes easily a problem of
inconsistency between FUNC and VBFNCT. When a vector version of SPRING is available,
we are free from such problems.

5.3.1 Event generation algorithm on a vector computer

In figure 5.3 the algorithm of event generation on a vector computer is shown, where the
NSIZE objects of array IC(4), ¢ = 1, NSIZE, are considered, each of which corresponds

5.3. EVENT GENERATION 189

to a candidate of generating event. Here, the number NSIZE is identical to that in the
include file INCLVS and is the vector length or the length of the inner most do-loop.
Suppose we have integrated a distribution function by BASES to generate events and
have written the probability information on a output file.

Then,

(1)

(8)

Sample NSIZE hypercubes according to the probability information and store the
hypercube numbers in the array IC.

Sample NSIZE sampling points, where each point belongs to each sampled hyper-
cube.

Calculate the numerical values of the distribution function at these sampling
points.

Generate NSIZE uniform random numbers, store them in a array RX(), test the
values of distribution function by them, and set those hypercube numbers equal
to zero whose sampling points are accepted by the test.

The test condition is :

DO 100 I = 1, NSIZE
IF(FX(I)/FMX(IC(I)) .LT. RX(I)) THEN
IC(I) =0
ENDIF
100 CONTINUE

where FX(4) and FMX(IC(7)) are the numerical value of the distribution func-
tion for the hypercube of i-th object and the maximum value for the object,
respectively.

Write four vectors of those events on a output file, whose hypercube numbers
were set equal to zero in the step (4).

Only the accepted sampling points are filled into the histograms in the subpro-
gram VSHUPD by using the flag array IC(%).

Sample hypercubes only for those objects whose hypercube numbers were set to
zero in the step (4) and store the new hypercube numbers into them.

Go to (2) unless the number of generated events exceeds the given number.

In this algorithm almost all calculation can be fully vectorized.

190 CHAPTER 5. GRACE FOR A VECTOR COMPUTER
4 N
Fig. 5.3 Algorithm of the event generation on a vector computer
o /

5.3. EVENT GENERATION 191

4 M

Fig. 5.4 Program structure of the vector SPRING50

_ J

The program structure of the vector version SPRING is shown in figure 5.4, where
the subprograms in the white box are generated by GRACE.
In the vector version the subprogram VSMAIN controls program flow as follows:

(A) Initialization
The subprograms BSREAD, USERIN, SPINIT and SHRSET are called, whose spec-

192 CHAPTER 5. GRACE FOR A VECTOR COMPUTER

ifications are identical to those for the scalar version.

(B) Event generation loop
The event generation loop is controlled by the routine VSPRNG, whose algorithm
is described above. The four vector of generated events are to be calculated in
SPEVNT only for those points, and to be written on a file, whose flag IC is zero
(i.e. only the accepted points are written). In VSHUPD, only the accepted points
are automatically filled into the histograms by using the flag array IC(7).

(C) Termination of process by printing the general information and histograms etc.

5.3.2 Subroutine to be prepared

The specifications of the subprograms USERIN and VBFNCT are identical to those for
the vector BASES. The subprograms SPINIT and SPTERM are also identical to the scalar
version. The difference appears only in the subprogram SPEVNT. In the scalar version
SPEVNT has no argument, but the vector version of SPEVNT has the array as an argument.

An example is shown in the source list 5.5, where the polar angle distribution of
the photon in the process ete™ — W*W ~ is filling into an additional histogram. Its
function is exactly identical to that of the example in subsection 3.6.3. The argument
is the flag array IC and its size NSAMPL. We can see that only the ¢th point of array
VEC (i, *,%*) is filled into the histogram, whose flag IC (%) is equal to zero.

The output from the vector SPRING is exactly identical to that from the scalar
version.

4 N
SUBROUTINE SPEVNT(NSAMPL, IC)

IMPLICIT REAL*8 (A-H, 0-Z)
INTEGER IC(NSAMPL)

PARAMETER (NGRAPH = 28, NEXTRN = 5, LAG = 72)
INCLUDE (INCLVS)

COMMON /SP4VEC/ VEC(NSIZE,4,NEXTRN)

COMMON / AMCNST / PI, PI2, RAD, GEVPB, ALPHA
DIMENSION PP(NSIZE),TH(NSIZE)

DO 100 I = 1, NSAMPL
IF(IC(I) .EQ. O) THEN
PP(I) = SQRT((VEC(I,1,1)**2+VEC(I,2,1)**2+VEC(I,3,1)**2)
* (VEC(I,1,5)**2+VEC(I,2,5)**2+VEC(I,3,5)**2))
ENDIF
100 CONTINUE

Source list 5.5 An example of SPEVNT for the vector version
continue to the next page

-

5.3. EVENT GENERATION 193
~
DO 200 I = 1, NSAMPL
IF(IC(I) .EQ. O) THEN
CS =(VEC(I,1,1)*VEC(I,1,5)+VEC(I,2,1)*VEC(I,2,5)
+VEC(I,3,1)*VEC(I,3,5))/PP(I)
TH(I) = ACOS(CS)*180.D0/PI
ENDIF
200 CONTINUE
CALL XVFILL(5, NSAMPL, TH, PP)
RETURN
END
Source list 5.5 An example of SPEVNT for the vector version
J
4 N
//XXXXG JOB CLASS=M,REGION=4096K,MSGLEVEL=1
//JOBPROC DD DSN=Mxxx.GRACE.Vyymmdd.PROGS,DISP=SHR
// EXEC #GRACEV
J /K m
//* PARTICLE TABLE
//*GENFGR.INTBL DD DSN=Mxxx.GRACE.Vyymmdd.DATA(PTCLTBLO) ,DISP=SHR
J R m e
//* INPUT DATA
//GENFGR.SYSIN DD DSN=Mxxx.GRACE.Vyymmdd.DATA(D5120) ,DISP=SHR
// DD DSN=Mxxx.GRACE.Vyymmdd.DATA (DEND) ,DISP=SHR
J R m
//* OUTPUT DATA OF CREATED GRAPHS
//*GENFGR.QUTDS DD DSN=userid.@.D5120.DATA,
//* DISP=(NEW,CATLG) ,UNIT=SYSDA, SPACE=(TRK, (2,2) ,RLSE) ,
//* DCB= (RECFM=FB, LRECL=80 ,BLKSIZE=3120)
J R m e
//* CREATE FILE FOR OUTPUT FORTRAN SOURCE CODE
//CREATE.NEWDS DD DSN=userid.@.D5120.F0RT77,
// DISP=(NEW,CATLG) ,UNIT=SYSDA,SPACE=(TRK, (4,4,4)),
// DCB=(RECFM=FB, LRECL=80,BLKSIZE=3120)
J /K m
//* CREATE FORTRAN SOURCE CODE
//GENFORT.FTO5F001 DD *
userid.@.D5120.F0ORT77
4,5000
/*
//
S Source list 5.6 JCL for the graph generation and vector source generation)

194 CHAPTER 5. GRACE FOR A VECTOR COMPUTER

5.4 Running on HITAC S820/80

In this section, we describe how to execute the integration and event generation jobs
on a vector computer, i.e., HITAC S820/80.

Graph generation and source code generation

The source code generation program for the vector computer is installed, for the time
being, only on FACOM at KEK. There are two different points between the JCLs’ for
the scalar and vector machines.

(1) EXEC #GRACEV will generate the source code for a vector processor.

(2) There are additional inputs, that is, the dimension (NDIM) and the number of calls
(NCALL). These parameters will determine the vector length (See section 5.2).

Generation of library

In order to copy the generated file from FACOM to HITAC, user should

(1) convert a sequential file from the generated partitioned file on FACOM (See
'MLIB.UTILITY.CNTL(POTOPS)’),

(2) get a file from FACOM using ftp on HITAC, and
(3) convert the sequential file to a partitioned file on HITAC.

User should edit a member #GENLIB.

//TI10HCL JOB CMD=NO,TIME=2,REGION=(4096K,5M),NOTIFY=TI10

//* Mxxx .GRACE. Vyymmdd

//*MAIN PAGES=99999

// EXEC F7E2HCL,

// PARM. FORT="HAP, 0PT(3) ,DCOM, COMARY, NOS , NOOPLIST, NAME’ ,
// PARM.LKED="LET ,NCAL,EX=EA,LD=ANY’

//FORT.SYSLIB DD DSN=#KEKD.WWG.VECTOR.FORT,DISP=SHR
//FORT.SYSIN DD DSN=#KEKD.WWG.VECTOR.FORT (AMPARM) ,DISP=SHR

// DD DSN=#KEKD.WWG.VECTOR.FORT (AMPTBL) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (AMPSUM) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (AMPORD) ,DISP=SHR

Source list 5.7 JCL for making the library for amplitude calculation

continue to the next page

_ /

5.4. RUNNING ON HITAC S820/80

/,// DD DSN=#KEKD.WWG.VECTOR.FORT (AMO0OO1) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (AMO002) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (AMO003) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (AMO004) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (AMO0OO05) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (AMO0O06) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (AM0023) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (AM0024) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (AMO025) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (AMO026) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (AMO027) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (AM0028) ,DISP=SHR
//*

// DD DSN=#KEKD.GRACE.VECTOR.FORT (SMINIT) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (SMEXTF) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (SMEXTV) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (SMPRPD) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (SMINTF) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (SMINTV) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (SMCONF) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (SMCONV) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (SMCONS) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (SMFFS) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (SMFFV) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (SMGGG) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (SMGGGG) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (SMSSS) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (SMSSSS) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (SMSSV) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (SMSSVV) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (SMVVV) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (SMVVVV) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (SMSVV) ,DISP=SHR
//*
// DD DSN=#KEKD.GRACE.VECTOR.FORT (SPLTQ) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (PHASEQ) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (POLA) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (FFS) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (FFS0) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (FFV) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (FFVO) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (SSV) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT (VVVV) ,DISP=SHR
// DD DSN=#KEKD.GRACE.VECTOR.FORT(VVS) ,DISP=SHR
//LKED.SYSLMOD DD DSN=#KEKD.@.WWG.VECTOR.LOAD,
// DISP=(RNW,CATLG,DELETE),
// SPACE=(CYL, (2,1,50))

Source list 5.7 JCL for making the library for amplitude calculation

195

196 CHAPTER 5. GRACE FOR A VECTOR COMPUTER

Notice:

In order to estimate the required memory size roughly, user may calculate the size
of array “AG” which is included in common /AMGRPH/. As seen in member “INCL1”,
the size is NSIZE x LAG x NGRAPH. In our example of the process efe” — WTW +,
these parameters are NSIZE = 302, LAG = 72 and NGRAPH = 28, then the size of this
array becomes 16 x 302 x 72 x 28 = 9741312 bytes. In the real case, this program
requires about 14 Mbytes.

When user changes the number of calls (NCALL), user should recreate the upper
library. Otherwise the warning or fatal messages are seen.

Test of the generated source code

A member #TESTV, which is a JCL for a testing program, is automatically generated.
This JCL is to execute the main program TESTV which is used to check the generated
amplitudes at a point in the phase space. The user is recommended to confirm the
gauge invariance and Lorentz frame independence before starting the integration by
BASES.

~
//TI10TEST JOB CMD=NO,CLASS=I,REGION=(4096K,5M) ,NOTIFY=TI10
//* MTAK.GRACE. Vyymmdd
//*MAIN PAGES=99999
// EXEC F7E2HCLG,
// PARM.FORT="HAP,0PT(3) ,DCOM,COMARY,NOOPLIST’,
// PARM.LKED=’"EX=EA,LD=ANY’
//FORT.SYSLIB DD DSN=#KEKD.WWG.VECTOR.FORT,DISP=SHR
//FORT.SYSIN DD DSN=#KEKD.WWG.VECTOR.FORT(TESTV) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (USERIN) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (VBFNCT) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (USROUT) ,DISP=SHR
//* DD DSN=#KEKD.WWG.VECTOR.FORT (SETMAS) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (XINIT) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (KINEM) ,DISP=SHR
// DD DSN=#KEKD.GRACE.PROGS (BDUMMY) ,DISP=SHR
//LKED.SYSLIB DD
// DD DSN=#KEKD.@.WWG.VECTOR.LOAD,DISP=SHR
//

L Source list 5.8 JCL for the gauge invariance test

/

Numerical integration by the vector BASES

JCL for the numerical integration is generated in a member #INTV. By this JCL one
can perform phase space integration with BASES. Don’t forget to fix the filenames of
kinematics.

5.4. RUNNING ON HITAC S820/80

/
//TI10WWA JOB CMD=NO,CLASS=I,REGION=(4096K,5M),NOTIFY=TI10

/ /% MTAK . GRACE. Vyymmdd

//*MAIN PAGES=99999

// EXEC FTE2HCLG,

// PARM. FORT="HAP,0PT(3) ,DCOM, COMARY ,NOS , NOOPLIST’ ,
// PARM. LKED="EX=EA,LD=ANY’

//FORT.SYSLIB DD DSN=#KEKD.WWG.VECTOR.FORT,DISP=SHR
//FORT.SYSIN DD DSN=#KEKD.WWG.VECTOR.FORT (MAINVB) ,DISP=SHR

// DD DSN=#KEKD.WWG.VECTOR.FORT (USERIN) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (VBFNCT) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (USROUT) ,DISP=SHR
//* DD DSN=#KEKD.WWG.VECTOR.FORT (SETMAS) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT(KINIT) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (KINEM) ,DISP=SHR
// DD DSN=#KEKD.BASES50.VECTOR.FORT(DVFILL) ,DISP=SHR
// DD DSN=#KEKD.BASES50.VECTOR.FORT(XVFILL) ,DISP=SHR
// DD DSN=#KEKD.BASES50.VECTOR.FORT (VSHUPD) ,DISP=SHR
//LKED.SYSLIB DD
// DD DSN=#KEKD.Q.WWG.VECTOR.L0OAD,DISP=SHR
// DD DSN=#KEKD.BASES50.VECTOR.LOAD,DISP=SHR
//G0.SYSIN DD *
1,1 LOOP MIN AND MAX

-4 Print Flag

0 Flag

9.9 CPU TIME IN MINUITS
/*

//G0.FT23F001 DD DUMMY

//* SPACE=(TRK, (5,5) ,RLSE) ,
//* DCB=(RECFM=VBS , BLKSIZE=23476)

Source list 5.9 JCL for the numerical integration

-

//*G0.FT23F001 DD DSN=userid.PROCESS.DATA,DISP=(NEW,CATLG,DELETE),

,/

Format of the output is described in section 3.5.6.

If user will execute the event generation, userid.PROCESS.DATA is required.

Event generation

JCL for the event generation on HITAC 820/20 is as follows:

s
//TI10SP JOB CMD=NO,CLASS=I,REGION=(4096K,5M) ,NOTIFY=TI10

e MTAK . GRACE. Vyymmdd

//*MAIN PAGES=99999

// EXEC FTE2HCLG,

// PARM.FORT="HAP,0PT (3) ,DCOM, COMARY ,NOOPLIST ,
// PARM. LKED=EX=EA,LD=ANY’

Source list 5.10 JCL for the event generation

continue to the next page

197

198 CHAPTER 5. GRACE FOR A VECTOR COMPUTER

~
//FORT.SYSLIB DD DSN=#KEKD.WWG.VECTOR.FORT,DISP=SHR
//FORT.SYSIN DD DSN=#KEKD.WWG.VECTOR.FORT(MAINVS) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (USERIN) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (VBFNCT) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (USROUT) ,DISP=SHR
//* DD DSN=#KEKD.WWG.VECTOR.FORT (SETMAS) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (KINIT),DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (KINEM) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (SPINIT) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (SPEVNT) ,DISP=SHR
// DD DSN=#KEKD.WWG.VECTOR.FORT (SPTERM) ,DISP=SHR
// DD DSN=#KEKD.BASES50.VECTOR.FORT(DVFILL) ,DISP=SHR
// DD DSN=#KEKD.BASES50.VECTOR.FORT (XVFILL) ,DISP=SHR
// DD DSN=#KEKD.BASES50.VECTOR.FORT (VSHUPD) ,DISP=SHR
//LKED.SYSLIB DD
// DD DSN=#KEKD.Q@.WWG.VECTOR.LOAD,DISP=SHR
// DD DSN=#KEKD.BASES50.VECTOR.LOAD,DISP=SHR
//G0.SYSIN DD *
10000 Number of events
1.0 CPU Time in Minutes
/%
//G0.FT23F001 DD DSN=userid.PROCESS.DATA,DISP=SHR,LABEL=(,,,IN)
Source list 5.10 JCL for the event generation

_ /

Chapter 6

Definition of the model

In chapter 2, we have described the Lagrangian of the standard model which our
calculation based on. Here we summarize the Feynman rules of the models. These
rules are given to GRACE through a model definition file. We also describe the structure
and format of the file.

6.1 Feynman rules

6.1.1 Particles

We use names of particles as shown in table 6.1. There are two types of particle
names in GRACE. Two character name is used to define external particles, to generate
FORTRAN variables. This kind of names is defined in the model definition file, and
these names can be changed. In order to identify special particles, predefined integer
numbers(particle id) are assigned. GRACE recognizes through particle id which particle
name corresponds to a special particle.

In the description of Feynman rules, 1, represents any fermion as a generic name.
Similarly, 17 and 1); are generic names representing upper and lower component of a
SU(2) doublet fermion.

Throughout this section, fields in a vertex description represents incoming fields
with incoming momenta to the vertex. That is, 1;v; W represents a vertex which
corresponds to < 0T Lpns ¥r 1; W0 >. The normalization of propagators and vertices
are given in chapter 2.

199

200 CHAPTER 6. DEFINITION OF THE MODEL

field meaning name in | particle
GRACE id

W W, | W boson WB 2
Z, Z boson ZB 4
A, photon AB 1
G, gluon GL 8
Xty x~ charged Goldstone boson XB 42
X3 neutral Goldstone boson X3 41
) Higgs boson PH 31
e~ electron EL 0
Ve electron neutrino NE 0
wo muon MU 0
vy muon neutrino NM 0
T tau lepton TA 0
vy tau neutrino NT 0
any lepton LU 0

any neutrino LD 0

U u-quark uQ 0
d d-quark DQ 0
s s-quark sSQ 0
c c-quark cQ 0
b b-quark BQ 0
t t-quark TQ 0
any up type quark Qu 0

any down type quark QD 0

cA ghost for A boson CA 11
ct ghost for W boson CP 12
c” ghost for W boson CM 13
cZ ghost for Z boson CZ 14
c¢ ghost for gluon CG 18

Table 6.1 Particle names

6.1.2 Propagators

Propagators in electroweak theory are given by:

e]
K —ie+ MZ Y YR +ie — aw MZ,

Wi——<——W;

K2 — e+ MZUY 2K ¥ ie — ag M2

Zh——<——7;

k*EY
k? + je

]

1
Ay—=<——A -9+ (1~ aa)

6.1. FEYNMAN RULES 201

X3~ ST X3 —k2—z'el+ az M
p-—<--9¢ —k2—2'16+m%1

bom<——9 —kﬁf;rf m>

crom<o e —kZ—ie:—awMﬁ,

c ——<—-—¢c" —k2—z'el+onM3V

¢ -—<— - —k2—iel+ az M
A——<-—-c —k21—ze

Gu—=<—-=G 2 [_guu+(1_o‘a)kl2€uf';e]
- —< - ﬁ

6.1.3 Vector-vector-vector vertex

Vertex of three vector bosons in electroweak theory takes the following form for vector
fields V,}(k), V§(p) and V*(q):

CVVV[(k — p)vgaﬁ + (- Q)agﬁ7 +(q - k)ﬁg”ra]

where, coupling constant CVVV is given by:

vertex CVvv

€MW
M2 - M2

Wi (B) W (p) Ay (g) CAWN = e

W, (k) W5 (p) Z,(q) CZwW =

Three gluon vertex in QCD for G&(k), G5(p) and G¢(q):

cQCD (=i f*)[(k — p)y9ap + (P — @)agpy + (¢ — k)897al

202 CHAPTER 6. DEFINITION OF THE MODEL

6.1.4 Vector-vector-vector-vector vertex

Vertex of four vector bosons in electroweak takes the following form for vector fields
Vo (k), V(p), V;'(q) and Vi'(r):

CVVVV gy 955 + Gas 95y — 20a89+s)

where, coupling constant CVVVV is:

vertex CVVVvV
Wy Wy A, As CWWAA = €2
62MW
W, Wy Z, As CWWZA = —(——
VM2 — MZ,
2 2
_ + _ € MW
2 2
Wo Ws W W CWWWW = MZ M3

Four gluon vertex in QCD for G&(k), G%(p), G5 (q)andG§(r) is given by:

—CQCD2 [(facefbde - fadebee)gaﬁg'yJ 4 (fabefcde . fadefbce)gcwgﬁé
+(facefdbe . fabefcde)gaég,yﬁ]

6.1.5 Fermion-fermion-vector vertex

Vertex of two fermions and a vector in electroweak takes the following form for fermion
fields ¢, ¥ and vector field V:

1475
2

1—s

CVFF(1)7, + CVFF(2)7a

where, coupling constant CVFF is given by (neglecting mixing matrix):

vertex CVFF

GMZ U;rz
V2(ME — M)
CWFF(2,1) =0

§ CWFF(1,1) =
Y Wi

6.1. FEYNMAN RULES 203

Dby W CWFF(1,2) = CONJG(CWFF(1,1))
P e CWFF(2, 2) = CONJG(CWFF(2, 1))
ot d CAFF(1) = eQ,
mne CAFF(2) = eQ,
(M2 M2 M2
CZFU(1) = °rz (1-2Q,~2 ")
_ 2 My /M3 — M3, My
eM3 M2 — M2,
CZFU(2) = (—2Qr 7)
\ 2 My /M3 — M3, M;
(M3 MZ% — M?
CZFD(1) = c 2 (—1 - 2Q;—2— W)
Gz 2 My /M3 — M3, My,
L eM? M2 — M2,
CZFD(2) = (—2Q 7)
\ 2My /M3 — M3, M

When mixing among quarks are incorporated, more vertices appear into to model.
Fermion-gluon vertex is given by:

Cac T %,

6.1.6 Scalar-scalar-vector vertex

Vertex of two scalars and a vector in electroweak takes the following form for scalar
fields S'(p), S%(q) and vector a field V3:

CVSS(p — ¢)a

where, coupling constant CVSS is given by:

vertex CVSS
_ ieMZ
X~ (p) p(q) Wi CWXP(1) = —(—2
e N
xt(p) p(q) W, CWXP(2) = —CONJG(CWXP(1))

eMZ

“(p q) Wi CWX3(1) = —F—————
X ()X3() 2\/m

204 CHAPTER 6. DEFINITION OF THE MODEL

xt(p) xs(q) W, CWX3(2) = —CONJG(CWX3(1))

x~(p) x(q) Za CZXX =
2My /M3 — M3,
x~(p) x*(q) Aa CAXX — —e
ieM%
x3(p) 9(q) Za CZ3P =

2My /M3 — M3,

6.1.7 Scalar-vector-vector vertex

Vertex of a scalar and two vectors in electroweak takes the following form for a scalar
field S, and vector fields V,, V3:

CSVVgags

where, coupling constant CSVV is given by:

vertex CSVV
My M
oW, Wi CPWW = W2
M% — M3,

3

6 Zo Zg CPZZ = eMy
M/ Mg — M3,

x Wi Zs CXWZ(1) = iey/MZ — MZ
XtTW, Zg CXWZ(2) = CONJG(CXWZ(1))
X~ Wi Ag CXWA(1) = —ieMy

xTW, Ag CXWA(2) = CONJG(CXWA(1))

a

6.1. FEYNMAN RULES 205

6.1.8 Scalar-scalar-vector-vector vertex

Vertex of two scalars and two vectors in electroweak theory takes the following form
for scalar fields S, S and vector fields V,, Vj:

CSSVVgas

where, coupling constant CSSVV is given by:

vertex CSSVV
2 2
e"M
PpOW, W5 CPPWW = ———5 2
g 2(Mz — Myy)
2 4
e“M,
¢bZy Zp CPPZZ = SNE, (ME — M2
ox~ Wi Z crruz() — Mz
X a B - 2MW
dxT W, Zg CPXWZ(2) = CONJG(CPXWZ(1))
by WA CPXWA (1) — i My
a A =
24/ M2 — M,
dxT W, Ag CPXWA(2) = CONJG(CPXWA(1))
2 2
e M
X3 x3s W5 Wy C33WW = ——— 2
$Xo Ha 2(MZ — M)
2 4
e“M,
“WiZ caxz() — &Mz
X3 X o ,8 - 2MW
xs X" W, Zg C3XWZ(2) = CONJG(C3XWZ(1))
- 62MZ
xs X W Ag C3XWA(1) =

xs X" W5 Ag C3XWA(2) = CONJG(C3XWA(1))

a

206 CHAPTER 6. DEFINITION OF THE MODEL

XtW, Wi oxxin = Mz
rA e T " 2(M3 - Myy)
2 2 2\2
e“(2My, — M3)
“xtZ,Z XXZZ = W Z
TS O T g (e~)
X xT Ay Ap CXXAA = 2¢2
2 2M2 - M2
X~ Xt Ao Zg cxxaz — & CMw = Mz)

M/ ME — M2,

6.1.9 Scalar-scalar-scalar vertex

Vertex of three scalars in electroweak theory is constant factor:

CSSs
where, CSSS is given by:
vertex CSSS
—em? M,
dx x* CPXX = L1
2My /M3 — M3,
—em? M,
¢ X3 X3 CP33 = 7
2 My /M3 — M3,
—3em?4 M
bbb CPPP — My 7

6.1.10 Scalar-scalar-scalar-scalar vertex

Vertex of four scalars in electroweak theory is constant factor:
CSSSS
where, coupling constant CSSSS is given by:
vertex CSSSS

— 3e*m3 M2
AMy, (M — Myy)

X3 X3 X3 X3 C3333 =

6.1. FEYNMAN RULES

207

X=X X X3 CXX33 = M%F;TE%MA%%)
- x" b6 CXXPP = M% (e ;/g%f_M]évzv)
66 X3 X3 CPP33 = o (e ;”;f_Mévzv)
X x xTxt CXXXX = — e mig My

2My, (M, — M)

6.1.11 Fermion-fermion-scalar vertex

Vertex of two fermions and a vector boson in electroweak theory takes the following
form for fermion fields ¢, ¢ and scalar field S:

1— 1+
CSFF(1)—° + CSFF(2) 275
where, coupling constant CSFF is given by:
vertex CSFF
em M
CXFF(1,1) = emr 7z 1
_— Myy/2(M3 — M%)
Yrix .
—iem; My t
CXFF(2,1) = 1

My+/2(M3 — M3,)

itr CXFF(1,2) = CONJG(CXFF(2,1))
iPrx CXFF(2,2) = CONJG(CXFF(1, 1))
— emn,M
CPFF(1) = a2
_ 2My /M3 — M3,
Vn P @
—em, My
CPFF(2) =

2My /M3 — M3,

208 CHAPTER 6. DEFINITION OF THE MODEL

jem M
C3FU(1) = M7z
_ 2 My /M3 — M3,
Yrr xs ,
—iemiMy
C3FU(2) =
\ 2 My /M3 — M3,
— dem;M
C3FU(1) = iz
i 2My /M3 — M3,
Vi i x3 .
tem; My
C3FU(2) =
\ 2 My /M3 — M3,

6.2 File format of model definition

The default models used in GRACE are defined in the file
“$ (GRACEDIR) /data/particle.table”.

This table includes QED, electroweak and QCD Feynman rules described in the pre-
vious section. Although this table does not include quark mixing, extention is straight
forward for the case with quark mixing.

We provide another model definition file

“$ (GRACEDIR) /data/particle.table0”.

In this table the interactions are omitted, which give rise to very small contributions
proportional to m2. Particularly, this may give negative cross section for polarized
process. For example, e*e™ y3 vertex is omitted since whose coupling constant is pro-
portional to m?.

We show the structure of this kind of file in Fig.6.1.
The meaning of each line is defined by the first letter in the line.

(1) When the first letter is “#”, then the line is comment line.
The first line of a file is used as the title line to distinguish this file from others.
Thus the first line of a file must be a comment line.

(2) The file is composed of the following three parts:

1
2
3
4

) definition of particles

) definition of interaction vertices

) definition of default values of masses and widths of particles.
) definition of default values of coupling constants.

The line which begins with the letter “E” is used to specify the end of each part.
The rest of the line should be blanks.

6.2. FILE FORMAT OF MODEL DEFINITION 209

*PTCLTBL Electro-Weak and QCD, no Cabbibo mixing, with Scalar
sk ok ok o o ok ok ok s ok ok ok sk ok ok ok s ok ok ok ok ok o sk ok ok ok s ok sk ok o sk ok sk ok s ok sk ok sk ok sk s ok sk ok s ok ok sk sk ok sk ok sk ok ok ok ok ok

* Particle Block <---- definition of particles
*
* Particles Fermion Charge Spin*2 Type Color
WB 0 1 2 2 1 W Boson
ZB 0 0 2 4 1 Z Boson
E <---- end of definition
sk sk s o ok ok koo ok o ok ok s o ok ok sk sk ok ok ok sk s ok sk o s ok ok sk s ok o ok ks o s o sk o ok o ok s o o ok sk sk o ok o sk ok s ok o ok ok sk ok o
* Vertex Block <---- definition of vertex
*

* LEGS VERTEX TABLE EORD WORD CORD NAME
* Gauge-boson Three-vertices

3 ZB WB WB 0 1 0 CZWW

3 AB WB WB 0 1 0 CAWW

3 WB NE EL 0 1 0 CWEL(2,2)

3 WB NM MU 0 1 0 CWMU(2,2)
E <---- end of definition

2k 3k ok ok 3k 3k 3k 3k 3k 3k 3k ok ok ok k %k %k ok 3k 3k ok 3k 3k 3k 3k ok %k %k %k %k %k 3k 3k 3k 5k %K %k 3k %k %k %k %k %k %k 3k 3k %k %k %k %k %k %k %k %k %k %k %k %k 5k %k %k 5k %k %k %k %k %k %k *k

* Mass <---- set the constant parameters
AMWB = 80.0DO
AMZB = 91.1DO
particle masses
*
* Width
AGWB = 0.0DO
AGZB = 0.0DO
total decay width of particle
E
* Coupling constants
C __
AMWB2 = AMWB*AMWB
AMZB2 = AMZB*AMZB
set the parameters used at the vertex
* VVV
CZwwW = CEx*GW
CAWW = CE
CWL (1,1) = GWFL
CWwL (2,1) = GWFR
CWL (1,2) = CONJG(CWL (1,1))
CWL (2,2) = CONJG(CWL (2,1))
CWEL(1,1) = GWFL
definition of coupling
*

Fig. 6.1 Structure of Particle table

210 CHAPTER 6. DEFINITION OF THE MODEL

(3) Other lines are used to describe properties of particles or vertices. These lines
should begin with blank character.

In the following subsections, we describe the specification of the first two parts of
the file, i.e., definition of particles and interaction vertices.

The last two parts are used to define default values of parameters, such as value
of particles masses or value of coupling constants. Since these parameters are not
independent, and many of them are calculated from independent parameters. These
parts are written in the form of FORTRAN code, by which parameters are calculated.
Actually in the generated code, third and fourth part is copied to the subroutines
SETMAS and AMPARM, respectively (See section 3.2). Subroutine USERIN calls SETMAS and
AMPARM in this order at the beginning of the calculation of amplitudes. Default values of
masses and widths are defined in the subroutine SETMAS and value of coupling constants
are calculated in the subroutine AMPARM by using parameters defined in SETMAS. One
can change the values of masses and widths before calling AMPARM in the subroutine
USERIN.

6.2.1 Definition of particles

Particles which participate into the process are defined in this table. The general
format is as follows;

1) One line is reserved for one particle.

2) The properties of the particle should be written from the second column and each
property must be separated by at least one blank.

The items of particle property are described below (item number is counted from left
to right on a line).

1) Name of particles
The name should be two characters (one character is not allowed). In the
generated FORTRAN code, the mass of the particle is expressed by attaching
“AM” in front of the name and the total decay width is given by the prefix “AG”.

2) Fermion Number
If the particle is not fermion then 0. Otherwise it is positive integer, which is
common to fermions with same conserving fermion number.

3) Electric charge
Assign “(charge) — 2 x (baryon number)”, where charge is the electric charge in
the unit of positron charge e.

4) twice of spin
Assign twice of the intrinsic spin of the particle.

6.2. FILE FORMAT OF MODEL DEFINITION 211

5)

6)

particle-id
In order to specify special particles, identifying number is assigned to these par-
ticles as shown in the above table. To other particles, 0 is assigned.

Color
The QCD color dimension of particles (singlet:1, triplet:3, octet:8, ...).

After the sixth item, characters are treated as comments.

6.2.2 Definition of vertices

The general format is as follows;

1)
2)

One line is reserved for one kind of vertex.

The properties of the vertex should be written from the second column and each
property must be separated by at least one blank.

The items of vertex property are described below (item number is counted from left to
right on a line).

1)
2)

number of particles connected with the vertex.

Names of particles connected with the vertex.

List the names of all the particles, defined in the definition of particles, with the
spacing at least one blank. When the same kind of particles appear more than
once, repeat the name same times of its appearance.

The order of QED interaction(EORDER).
This is equal to the power of the coupling constant e in the given process.

The order of electroweak interaction (WORDER).
In our definition of interactions of electroweak theory, all the couplings contains
the charge e. Thus this WORDER is equal to the power of e in the process.

The order of QCD interaction(CORDER). It is allowed to give this item together
with EORDER and/or WORDER specification.

The name of the variable corresponding to coupling constant used in the gener-
ated FORTRAN code (within 6 characters).

The name defined here is regarded as complex variable in the generated FOR-
TRAN source code.

A variable may be an array. There are left- and right handed coupling constants
in fermion-boson vertices. These two constants are stored in a array with two
components as an example of 1;1; Z,, vertex shown in the previous section. When
coupling constant of a vertex is different from one of its charge conjugated vertex,
as EX@W T vertex, it is stored as an element of array with its charge conjugated
value.

Chapter 7

Libraries for the amplitude
calculation

These libraries are developed for calculation of scattering amplitudes. GRACE generates
FORTRAN source code which call subroutines in these libraries.
First we fix our notations.

1. Feynman rules
Feynman rules are given in chapter 2 and 6.

2. Four momentum
Momentum is expressed by REAL*8 P(4) whose 4-th component is the energy of
the particle.

3. Spinor
The spinor is normalized as
_ 1+h
ulp, (o,) = (p+ m) 10
_ 1+ hys#
op o,) = (=)~ 2%,

where helicity h = +1 and spacial components of spin vector s is proportional to
three momentum of the particle, since we consider helicity states.

4. Polarization vector
The normalization of the polarization vector of vector particle, follows the defi-
nition given in chapter 2:

Z €p€v = —Guv + (-‘I]l\}qzl/’ etc.

spin

212

7.1. GENERATED FORTRAN SOURCE CODE 213

5. Spin component
The components of spin and polarization vector are specified by the following
numbering of the index,

Fermion : 0 (helicity —1), 1 (helicity +1)
Vector boson : 0, 1 (transverse), 2 (longitudinal)

6. Gauge parameters
By generated FORTRAN code, one can calculate the amplitude in general co-
variant gauge. The gauge parameter which appears in both of polarization vector
and the denominator of propagator of vector boson is defined by the array

COMMON /SMGAUG/AGAUGE(0:4)
REAL*8 AGAUGE.

The element of this array is controlled by the integer variable
COMMON /SMGAUS/IGAUOO, IGAUAB, IGAUWB, IGAUZB, IGAUGL.

Each of variables IGAUAB, IGAUWB, IGAUZB, IGAUGL takes 1, 2, 3, 4, corre-
sponding to, v, W*, Z° and gluon, respectively. The values of gauge parameters
are stored in AGAUGE(1) ... AGAUGE(4). The default values are given by sub-
routine AMPARM. If one wants to use unitary gauge, set corresponding variables
of IGAUAB, IGAUWB, IGAUZB, IGAUGL to 0. In this case irrelevant graphs are
automatically dropped.

7.1 Generated FORTRAN source code

We describe an outline of method of calculation of amplitude by generated code (see
also section 3.2).

1. At the first stage the external lines are processed.
The subroutine SMEXTF is called for each fermion and SMEXTV for vector parti-
cle. They construct tables of information about external lines necessary for the
succeeding calculation.

2. Define internal momenta.
Internal momenta are defined as linear combinations of external momenta and
denominator of the propagators are calculated.

3. Next internal lines are processed.
In the method of CHANEL, numerator of propagators are decomposed as bi-linear
form of on-shell wave functions. For this purpose, the subroutine SMINTF is called
for the numerator of the propagator of each fermion and SMINTV for that of vector
particle.

214

CHAPTER 7. LIBRARIES FOR THE AMPLITUDE CALCULATION

4. Then the vertex is calculated.

According to the kind of vertex, the following subroutine is called:

SMFFV Fermion-fermion-vector
SMFFS Fermion-fermion-scalar
SMVVV Vector-vector-vector
SMSVV Scalar-vector-vector

SMSSV Scalar-scalar-vector

SMSSS Scalar-scalar-scalar
SMVVVV Vector-vector-vector-vector
SMSSVV Scalar-scalar-vector-vector
SMSSSS Scalar-scalar-scalar-scalar
SMGGG Gluon-gluon-gluon

SMGGGG Gluon-gluon-gluon-gluon

Values of coupling constants used by them are given in the chapter 6. The result
of calculation of vertex amplitude is stored in a table for each helicity states.
This table is composed of two arrays LT (information about the size this table)
and AV (values of amplitude).

. Connect the vertices by internal lines.

Since vertices are connected by propagators in the Feynman graph, table of am-
plitudes for vertices are connected by summing over indices introduced when
propagators are decomposed. The following subroutines are called to connecting
tables of amplitudes.

SMCONF connect by a fermion propagator
SMCONV connect by a vector propagator
SMCONS connect by a scalar propagator

Ordering of particles in the table of amplitude

Intermediate results appear as connected tables of vertex amplitudes. They are
connected again and again until amplitude of whole Feynman graph is obtained.
Since propagators to be connected is specified by the position in the table, knowl-
edge about the ordering convention of particles in the table is necessary to check
the validity of generated source code.

When an amplitude of a vertex is calculated by calling the corresponding sub-
routine, the ordering of particles in the table is represented by the name of the
subroutine and ordering of arguments of the subroutine called. For example, in
the subroutine SMFFV the amplitude table is arranged in the order of F(fermion),
F(fermion) and V(vector). Ordering of two fermions are determined by the order-
ing of the arguments. The exact description of ordering in the vertex calculation
is given in the description of each subroutine.

When two particles are taken from two tables and connected, the resultant or-
dering of particles in the table is obtained by merging two sequence of ordered

7.2. INTERFACE ROUTINES TO CHANEL 215

particles omitting the connected particles. For example, suppose one has tables of
amplitudes (particle-1, particle-2, particle-3) and (particle-4, particle-3, particle-
5). Then the particle-3 can be connected and the resultant amplitude has a table
(particle-1, particle-2, particle-4, particle-5). The final form of the table corre-
sponds to the Feynman graph. However it is possible that the ordering of the
external particles in the tables are different graph to graph. Before amplitudes
are summed over graphs, standardization of the ordering is necessary. For this
purpose subroutine AMPORD is applied to the resultant table of amplitude for each
graph.

7. After summing over all diagrams, the helicity amplitudes is squared. If neces-
sary, spin states are summed further. It is done by subroutine AMPSUM, which is
included in the generated code.

7.2 Interface routines to CHANEL

7.2.1 External particle

Before calculation of vertex amplitude, tables of information about external and inter-
nal particles are prepared.

External fermion

External fermion line has its own table used for calculating vertex amplitude. It is
obtained by:

4)
CALL SMEXTF(IO, AM, PE, PS, CE)
INTEGER I0 input
REAL*8 AM input
REAL*8 PE(4) input
REAL*8 PS(4,2) output
COMPLEX*16 CE(2,2) output
- /

1. The variable I0 takes the value 1, if the input spinor is u or v, and 2, if @ or .
2. AM means the mass of fermion.

3. PE is an array of four-momentum.

4. The output variables PS, CE are used in SMFFV and SMFFS.

5. At the same time another variable used in SMFFV, SMFFS and SMCOMF.

216 CHAPTER 7. LIBRARIES FOR THE AMPLITUDE CALCULATION

REAL*8 EW(1)
EW(1) = (1 for particle, -1 for anti-particle)

is also defined in the generated code.

External vector boson

External vector particles also have corresponding tables:

a CALL SMEXTV(LP, AM, PE, EP, EW, IGAUG))
INTEGER LP input
REALx*8 AM input
REAL*8 PE(4) input
REAL*8 EP(4,LP) output
REAL*8 EW(LP) output
INTEGER IGAUG input
- J

1. LP is the freedom of polarization vector.
It is 2 for A,, G, and 3 for let, Zy,.
Here A,, G, WujE and Z, represent photon, gluon, W+ and Z° bosons.

2. AM is the mass of particle.
3. PE is an array of four-momentum.

4. The output variable EP is the table of the polarization vectors. The first index
indicates the components of four-vector and the second index classifies 1, 2 :
transverse, 3 : longitudinal polarization vector.

5. The output variable EW is used in SMCONV.

6. IGAUG is used to select the gauge.
If it is 0, then unitary gauge, otherwise general covariant gauge. The value of
gauge parameter is taken from a component AGAUGE (IGAUG) of array defined as
REAL*8 AGAUGE(0:4) in the common block /SMGAUG/.

7.2.2 Numerator of propagator
Fermion propagator

The following subroutine calculates a table for numerator of fermion propagator.

7.2. INTERFACE ROUTINES TO CHANEL 217

4 N
CALL SMINTF(AM, PE, VM, EW, PS, CE)
REAL*8 AM input
REAL*8 PE(4) input
REAL*8 M input
REAL*8 EW(2) output
REAL*8 PS(4,3) output
COMPLEX*16 CE(2,4) output
- /

1. AM is the mass of particle.
2. PE is an array of four-momentum.

3. VM is the square of four-momentum. Sometimes numerical cancellation appears in
the direct calculation of this quantity by PE(0)**2 - PE(1)**2 — PE(2)**2 -
PE(3)**2. In the generated code, this is calculated from inner products between
external momenta.

4. EW is used in SMFFV, SMFFS and SMCOMF.

5. The output variables PS, CE are used in SMFFV and SMFFS.

Numerator of vector boson propagator

Internal vector particles also have corresponding tables:

(CALL SMINTV(LP, AM, PE, EP, EW, VM, IGAUG))
INTEGER LP input
REAL*8 AM input
REAL*8 PE(4) input
REAL*8 EP(4,LP) output
REAL*8 EW(LP) output
REAL*8 M input
INTEGER IGAUG input
- /

1. LP is the freedom of polarization vector.
It is 3 for A,, G, and 4 for Wui, Zy.
Here Ay, G,, W and Z, represent photon, gluon, W* and Z° bosons.

2. AM is the mass of particle.

3. PE is an array of four-momentum.

218

CHAPTER 7. LIBRARIES FOR THE AMPLITUDE CALCULATION

The output variable EP is the table of the polarization vectors. The first index
indicates the components of four-vector and the second index classifies 1, 2 :
transverse, 3 : longitudinal, 4 : virtual polarization vector.

The output variable EW is used in SMCOMV.

VM is the square of four-momentum. Sometimes numerical cancellation appears in
the direct calculation of this quantity by PE(0)**2 - PE(1)**2 — PE(2)**2 -
PE(3)**2. In the generated code, this is calculated from inner products between
external momenta.

IGAUG is used to select the gauge.

If it is 0, then unitary gauge, otherwise general covariant gauge. The value of
gauge parameter is taken from a component AGAUGE(IGAUG) of array defined as
REAL*8 AGAUGE(0:4) in the common block /SMGAUG/.

7.2.3 Denominator of propagator

This subroutine calculates the denominator of the propagator.

4 CALL SMPRPD(APROP, AMOMQ, AMASSQ, AMAG) A
COMPLEX*16 APROP input/output
REAL*8 AMOMQ input
REAL*8 AMASSQ input
REAL*8 AMAG input
N /

. APROP is the product of denominators of propagators. This subroutines calculates

APROP = (denominator of a propagator)* APROP.

. AMOMQ is the square of four-momentum. Sometimes numerical cancellation ap-

pears in the direct calculation of this quantity by P(0) **2 - P(1)*%2 - P(2)*%2
- P(3)**2. In the generated code, this is calculated from inner products between
external momenta.

. AMASSQ is the square of mass of the particle.

. AMAG is the product of mass and width of the particle.

7.2. INTERFACE ROUTINES TO CHANEL 219

7.2.4 Vertices
Fermion-fermion-vector coupling

This calculates the fermion-fermion-vector vertex

_ 1— 14
U2(p2)¢ <CL 2’}/5 + CR 2’}/5

) Ui(p1),

where U represents a spinor u or v. It returns the results for all combinations of helicity
and polarization states (See section 6.1.5).

CALL SMFFV(L1, L2, LV, EWil, EW2, AM1, AM2, CPL, CE1, CE2,
& PSi, PS2, EP, LT, AV)

INTEGER L1, L2 input

INTEGER LV input

REAL*8 EW1(L1/2) input

REAL*8 EW2(L2/2) input

REAL=*8 AM1, AM2 input

COMPLEX*16 CPL(2) input

COMPLEX*16 CE1(2,L1) input

COMPLEX*16 CE2(2,L2) input

REAL*8 PS1(4,L1/2+1) input

REAL*8 PS2(4,L2/2+1) input

REAL*8 EP(4,LV) input

INTEGER LT(0:3) output

COMPLEX*16 AV (0:L1*L2*LV-1) output

o _/

1. L1, L2 imply the freedom of fermion for Uy, Us, respectively.
It takes 2 for external line and 4 for internal line.

2. LV is, like LP in SMEXTV or SMINTV, the freedom of the polarization vector.

external line : 2 for Ay, G, and 3 for W, Z,.
internal line : 3 for Ay, G, and 4 for W, Z,.

3. The variables EW1, EW2 take the value EW created in SMINTF for internal line and
(1) for particle or (—1) for anti-particle in the external line.

4. AM1, AM2 are masses of fermions.

5. CPL(1), CPL(2) represent left-handed(C},), right-handed(Cg) coupling constant,
respectively.

6. CE1, CE2 is CE created in SMINTF or SMEXTF.

7. PS1, PS2 is PS created in SMINTF or SMEXTF.

220 CHAPTER 7. LIBRARIES FOR THE AMPLITUDE CALCULATION

8. EP represents the polarization vector of vector boson and is the same one as
created in SMEXTV or SMINTV.

9. AV the final result of amplitude(table).
The ordering of index in the table is U;(p;), Ua(p2), vector.

10. LT is the data which represent the structure of the table AV and used in SMCONF,
SMCONV and AMPORD.

Fermion-fermion-scalar coupling

This calculates fermion-fermion-scalar vertex

L+
+C
2 By

) Ui(p1)

where U represents a spinor u or v. It stores the results for all the combinations of
helicity and polarization (See section 6.1.11).

CALL SMFFS(L1, L2, EW1l, EW2, AM1, AM2, CPL, CE1, CE2, h
& PS1, PS2, LT, AV)
INTEGER L1, L2 input
REAL=*8 EW1(L1/2) input
REAL*8 EW2(L2/2) input
REAL*8 AM1, AM2 input
COMPLEX*16 CPL(2) input
COMPLEX*16 CE1(2,L1) input
COMPLEX*16 CE2(2,L2) input
REAL*8 PS1(4,L1/2+1) input
REAL=*8 PS2(4,L2/2+1) input
INTEGER LT(0:3) output
COMPLEX*16 AV(0:L1xL2-1) output
- J

1. L1, L2 are freedom of fermion corresponding to Uy, Us, respectively.
It takes 2 for external line and 4 for internal line.

2. EW1, EW2 is EW created in SMINTF for external line and (1) for particle or (—1) for

anti-particle for internal line.

3. AM1, AM2 are masses of fermions.

4. CPL(1), CPL(2) represent left-handed (Cp), right-handed (Cg) coupling con-

stants, respectively.

5. CE1, CE2 is CE created in SMINTF or SMEXTF.

7.2. INTERFACE ROUTINES TO CHANEL 221

6. PS1, PS2 is PS created in SMINTF or SMEXTF.

7. AV is the table of amplitude. The ordering of the index in the table is U;(p;),

Us(ps), scalar.
8. LT is the data which represents the structure of the table AV and used in SMCONF,
SMCONV and AMPORD.

Vector-vector-vector coupling

This calculates 3-point vertex of vector bosons,

Cl((p1 — p2)-es)(e1-€2) + (P2 — ps)-€1)(€2.€3) + ((ps — p1)-€2)(€5.€1)]
(See section 6.1.3).

CALL smvvv(L1,L2,L3, K1,K2,K3, CPL, A
& P1,P2,P3, E1,E2,E3, LT,AV)

INTEGER L1, L2, L3 input

INTEGER K1, K2, K3 input

COMPLEX*16 CPL input

REAL*8 P1(4),P2(4),P3(4) input

REAL*8 E1(4,L1) input

REAL*8 E2(4,L2) input

REAL*8 E3(4,L3) input

INTEGER LT(0:3) output

COMPLEX*16 Av(0:L1*L2*L3-1) output

- /

1. L1, L2, L3is, like LP in SMINTV or SMINTV, the freedom of polarization vector.

2. K1, K2, K3 denote the direction of the momentum.
If momentum is incoming to vertex, then it takes 1, otherwise —1.

3. CPL is coupling constant C'.
4. P1, P2, P3 are momenta of particles.

5. E1, E2, E3are equal to EP created in SMEXTV or SMINTV and represent the vector
of polarization vector.

6. AV is the resultant table of amplitude. The ordering of the index in the table is
the same as that of the arguments, namely the order of vector-1, vector-2 and
vector-3.

7. LT is the data which represents the structure of the table AV and is used in SMCONV
and AMPORD.

222 CHAPTER 7. LIBRARIES FOR THE AMPLITUDE CALCULATION

Gluon-gluon-gluon coupling

This calculate gluon 3-point vertex

Cl((p1 — p2)-€3)(€1-€2) + ((p2 — p3)-€1)(€2-€3) + ((p3 — p1)-€2)(€3-€1)]-

CALL SMGGG(L1,L2,L3, K1,K2,K3, CPL,
P1,P2,P3, E1,E2,E3, LT,AV)

This is the same as SMVVV.
1. L1, L2, L3is, like LP created in SMINTV the freedom of polarization vector.

2. K1, K2, K3 denote the direction of momentum.
If momentum is coming into the vertex, then it takes 1, otherwise —1.

3. CPL is the coupling constant C.
4. P1, P2, P3 are momenta of particles.

5. E1, E2, E3is the polarization vector of vector boson and equal to EP created in
SMINTV.

6. AV is the table of the resultant amplitude. The ordering of the index of the table
is the same as the arguments, vector-1, vector-2 and vector-3.

7. LT is the data which represents the structure of the table AV and is used in SMCONV
and AMPORD.

Scalar-vector-vector coupling

This calculates scalar-vector? vertex C/(e;.€3) (See section 6.1.7).

CALL SMSvv(L2, L3, CPL, E2, E3, LT, AV))
INTEGER L2, L3 input
COMPLEX*16 CPL input
REAL*8 E1(4,L2) input
REAL*8 E2(4,L3) input
INTEGER LT(0:3) output
COMPLEX*16 Av(0:L2+#L3-1) output
o /

1. L2, L3 are, like LP in SMINTV, the freedom of the polarization vector.

7.2. INTERFACE ROUTINES TO CHANEL 223

2. CPL is the coupling constant C.

3. E2, E3 are polarization vectors of vector boson and are equal to EP created in
SMEXTV or SMINTYV.

4. AV is the table of resultant amplitude. The ordering of index in the table is the
same as the arguments, scalar, vector-2 and vector-3.

5. LT is the data which represents the structure of the table AV and used in SMCONV,
SMCONS and AMPORD.

Scalar-scalar-vector coupling

This calculates scalar?-vector vertex C'((p; — p2).€3) (See section 6.1.6).

g CALL SMSSV(L3, K1, K2, CPL, P1, P2, E3, LT, AV))
INTEGER L3 input
INTEGER K1, K2 input
COMPLEX*16 CPL input
REAL*8 P1(4),P2(4) input
REAL*8 E3(4,L3) input
INTEGER LT(0:3) output
COMPLEX*16 Av(0:L3-1) output
- /

1. L3 is, like LP in SMINTV, the freedom of polarization vector.

2. K1, K2 denotes the direction of momentum of scalar.
If momentum is coming into the vertex, it takes 1 and otherwise —1.

3. CPL is the coupling constant C.
4. P1, P2 are momenta of scalar.
5. E3 is polarization vector of vector boson and equal to EP created in SMINTV.

6. AV is the table of resultant amplitude. The order of index in the table is the same
as the arguments, scalar-1, scalar-2 and vector.

7. LT is the data which represents the structure of the table AV and is used in SMCONV,
SMCONS and AMPORD.

224 CHAPTER 7. LIBRARIES FOR THE AMPLITUDE CALCULATION

Scalar-scalar-scalar coupling

This calculates scalar® vertex C (See section 6.1.9).

CALL SMSSS(CPL, LT, AV)

COMPLEX*16 CPL input
INTEGER LT(0:3) input
COMPLEX*16 Av(0:0) output

1. CPL is the coupling constant C.
2. AV is the table of resultant amplitude. The order of index of the table is irrelevant.
3. LT is the data which represents the structure of the table AV and is used in SMCONS
and AMPORD.
Vector-vector-vector-vector coupling

This calculates vector? vertex
c[(e1.€3)(€2.€4) + (€1.€4)(€2-€3) — 2(€71.€2)(€3.€4)]
(See section 6.1.4).
4 I

CALL SMVVVV(L1,L2,L3,L4,CPL,E1,E2,E3,E4,LT,AV)
INTEGER L1, L2, L3, L4 input
COMPLEX*16 CPL input
REAL*8 E1(4,L1) input
REAL*8 E2(4,L2) input
REAL*8 E3(4,L3) input
REAL*8 E4(4,L4) input
INTEGER LT(0:4) output
L COMPLEX*16 AV(0:L1%L2xL3xL4-1) output
/

1. L1, L2, L3, L4 is, like LP in SMINTV, the freedom of polarization vector.
2. CPL is the coupling constant C.

3. E1, E2, E3, E4isthe polarization vector of vector boson and equal to EP created
in SMINTYV.

4. AV is the table of resultant amplitude. The ordering of index in the table is the
same as the arguments 1, 2, 3 and 4.

5. LT is the data which represents the structure of the table AV and is used in SMCONV
and AMPORD.

7.2. INTERFACE ROUTINES TO CHANEL 225

Gluon-gluon-gluon-gluon coupling

This is similar to the 4-point vertex of heavy vector boson, but it calculates only the
coefficient of the single term of color factor

Cl(€1-€3)(€a-€4) — (€1.€4)(€2.€3)].

[CALL SMGGGG(L1,L2,L3,L4,CPL,E1,E2,E3,E4,LT,AV))

Arguments are the same as SMVVVV.
1. L1, L2, L3, L4 are, like LP created inSMINTV, the freedom of polarization vector.
2. CPL is the coupling constant C.

3. E1, E2, E3, E4isthe polarization vector of vector boson and equal to EP created
in SMINTV.

4. AV is the table of the resultant amplitude. The ordering of the indices of the table
is the same as the arguments, 1, 2, 3 and 4.

5. LT is the data which represents the structure of the table AV and is used in SMCONV
and AMPORD.

Scalar-scalar-vector-vector coupling

This calculates scalar®>-vector? vertex C/(es.€4) (See section 6.1.8).

g CALL SMSSVV(L3,L4,CPL,E3,E4,LT,AV))
INTEGER L3, L4 input
COMPLEX*16 CPL input
REAL*8 E3(4,L3) input
REAL*8 E4(4,L4) input
INTEGER LT(0:4) output
COMPLEX*16 AV (0:L3%L4-1) output
- /

1. L3, L4 is, like LP created in SMINTV, the freedom of polarization vector.
2. CPL is the coupling constant C.

3. E3, E4 is the polarization vector of vector boson and equal to EP created in
SMINTV.

226 CHAPTER 7. LIBRARIES FOR THE AMPLITUDE CALCULATION

4. AV is the table of resultant amplitude. The ordering of the index is the same as
the arguments, scalar-1, scalar-2, vector-3 and vector-4.

5. LT is the data which represents the structure of the table AV and is used in SMCONV,
SMCONS and AMPORD.

Scalar-scalar-scalar-scalar coupling

This calculates scalar* vertex C (See section 6.1.10).

CALL SMSSSS(CPL, LT, AV)

COMPLEX*16 CPL input
INTEGER LT(0:4) input
COMPLEX*16 Av(0:0) output

1. CPL is the coupling constant C.
2. AV is the table of resultant amplitude.

3. LT is the data which represent the structure of the table AV and is used in SMCONS
and AMPORD. The ordering of the index in the table is irrelevant.

7.2.5 Connecting amplitude

The amplitude of a part of a given diagram, which is constructed by connecting smaller
amplitudes by internal lines. The latter amplitudes are obtained by either calculating
vertex or using the following subroutines. Called subroutines depend on the kinds
of internal lines; for fermion line call SMCONF, for vector boson SMCONV and for scalar
SMCONS.

e ™
CALL SMCONF(LT1,LT2,LP1,LP2,EW,AV1,AV2,LT,AV)

CALL SMCONV(LT1,LT2,LP1,LP2,EW,AV1,AV2,LT,AV)
CALL SMCONS(LT1,LT2,LP1,LP2,AV1,AV2,LT,AV)

INTEGER LT1(0:*), LT2(0:%) input

COMPLEX*16 AV1(0:%), AV2(0:%) input

INTEGER LP1, LP2 input

REAL*8 EW(*) input

INTEGER LT(0: number if indices) input

L COMPLEX*16 AV(0: freedom of index -1) output
/

1. AV1, AV2 are tables of resultant amplitude.

7.2. INTERFACE ROUTINES TO CHANEL 227

2. LT1, LT2 represent the structure of the table AV.

3. LP1, LP2 indicate which particles in LT1, LT2 are connected, respectively.
4. EW is identical with EW created in SMINTF, SMINTV.

5. AV is the table of resultant amplitude.

6. LT is the data which represents the structure of the table AV and is used in SMCONx
or AMPORD. The ordering of the indices is the same as that of LT1, LT2 omitting
the particles to be connected.

7.2.6 Check consistency of generated code

This subroutine checks consistency between generated code and library by comparing
version numbers.

CALL SMINIT(NV, NS)

INTEGER NV input
INTEGER NS input

1. NV, NS are version and sub-version number of grace system, by which source
code is generated.

228 CHAPTER 7. LIBRARIES FOR THE AMPLITUDE CALCULATION

7.3 Program package CHANEL

7.3.1 Decomposition of propagator
Polarization vector

This sets components of polarization vectors.

CALL POLA(I, A, AM, P, EP, EM) A
INTEGER I input
REAL*8 A input
REAL*8 AM input
REAL*8 P(4) input
REAL*8 EP(4) output
REAL*8 EM(4) output
- J

1. the expressions for rectangular polarization basis are presented in Eq.(2.163).

2. I : polarization state of vector boson.

o

A : gauge parameter of vector boson. A > 100 gives the unitary gauge propagator
for massive vector boson.

AM : mass of vector boson.
P(4): momentum of vector boson.

EP(4) : polarization vector for state I.

R

EM(4) : weight factor, which are presented in Eq.(2.164).

Decomposition of four momentum

This decomposes the momentum of a massive fermion to two light-like vectors according
to Eq.(2.140).

CALL SPLTQ(AM, P, P2, P1)

REAL*8 AM input
REAL*8 P(4) input
REAL*8 P1(4), P2(4) output

1. AM : mass of fermion.
2. P(4) : momentum of fermion.

3. P1(4),P2(4) : decomposed light-like vectors.

7.3. PROGRAM PACKAGE CHANEL 229

Phase factors of fermion

This calculates phase factors of the massive fermion presented in Eqs. (2.145) and
(2.146).

CALL PHASEQ(I,P,C)

INTEGER I input
REAL*8 P(4) input
COMPLEX*16 c(2) output

1. I: I=1for ci(p) and I=2 for complex conjugate of c.(p).
2. P(4) : momentum of massive fermion.

3. C(2) : calculated phase factors.

Split four momentum of internal fermion

This decomposes momentum of internal fermion with mass m into a light-like vector

and time-like vector with momentum square m2.

CALL SPLT(AM, P, S1, S2, P1, P2) A
REAL*8 AM input
REAL*8 P(4) input
REAL*8 S1, S2 output
REAL*8 P1(4), P2(4) output
- /

1. AM : mass of internal fermion.
2. P(4) : momentum of internal fermion.
3. 81,52 : sign factors for the decomposed vectors.

4. P1(4),P2(4) : decomposed four vectors.

7.3.2 Vertices

Vector-massless fermion vertex

This calculates vertex amplitudes for the vector boson-massless fermions vertex pre-
sented in Eq.(2.135).

230

- W N

CHAPTER 7. LIBRARIES FOR THE AMPLITUDE CALCULATION

CALL FFVO(P1,P2,P,AALL)

REAL*8 P1(4), P2(4) input
REAL*8 P(4) input
COMPLEX*16 AALL(2) output

the explicit expressions for specified ky are presented in Eq.(2.138).
P1(4),P2(4) : momenta of massless fermions.
P(4) : polarization vector of vector boson coupled to fermion.

AALL(2) : calculated results of vertex amplitudes.

Vector-fermion vertex

This calculates vertex amplitude for the vector boson-massive fermions vertex presented
in Eq.(2.148).

e B A T

g CALL FFV(L,II,I,AAM,AM,AL,AR,CC,C,Q1,Q2,P1,P2,Q,AALL))
INTEGER L input
INTEGER I, II input
REAL*8 AM, AAM input
REAL*8 AL, AR input
COMPLEX*16 C(2), €C(2) input
REAL*8 P1(4), P2(4) input
REAL*8 Q1(4), Q2(4) input
REAL*8 Q4 input
COMPLEX*16 AALL(4,2,2) output
- J

L : polarization state of vector boson.

I,II: indices to specify fermion or antifermion state, where I(II)=3 for fermion
and I(II)=1 for antifermion, respectively.

AM, AAM : masses of fermions.

AL, AR : coupling constants for vertex.

C(2),CC(2) : phase factors for massive fermions.

P1(4),P2(4),Q1(4),Q2(4) : light-like vectors decomposed by subroutine SPLTQ.
Q(4) : polarization vector of vector boson.

AALL(4,2,2) : calculated results of vertex amplitudes for all possible helicity
states.

7.3. PROGRAM PACKAGE CHANEL 231

Scalar-massless fermion vertex

This calculates vertex amplitudes for scalar boson-massless fermions vertex presented
in Eq.(2.151).

CALL FFSO(P1, P2, AALL)

REAL*8 P1(4), P2(4) input
COMPLEX=*16 AALL(2) output

1. P1(4),P2(4) : momenta of massless fermions.

2. AALL(2) : calculated results of vertex amplitudes.

Scalar-fermion vertex

This calculates vertex amplitudes for scalar boson-massive fermions vertex presented
in Eq.(2.150).

4 CALL FFS(II,I,AAM,AM,AL,AR,CC,C,Q1,Q2,P1,P2,AALL) h
INTEGER I, II input
REAL*8 AM, AAM input
REAL*8 AL, AR input
COMPLEX*16 c, cC input
REAL*8 P1(4), P2(4) input
REAL*S Q1(4), Q2(4) input
COMPLEX*16 AALL(2,2) output
- /

1. I,II: indices to specify fermion or antifermion state, where I(II)=3 for fermion
and I(II)=1 for antifermion, respectively.

2. AM, AAM : masses of fermions.

3. AL, AR : coupling constants for vertex.

4. C(2),CC(2) : phase factors for massive fermions.

5. P1(4),P2(4),Q1(4), Q2(4) : light-like vectors decomposed by subroutine SPLTQ.

6. AALL(2,2) : calculated results of vertex amplitudes for all possible helicity states.

232

Three vector vertex

This calculates vertex amplitude for three vector boson vertex, presented in Eq.(2.155).

CHAPTER 7. LIBRARIES FOR THE AMPLITUDE CALCULATION

-

N

CALL VVV(GG,P1,P2,P3,EP1,EP2,EP3,AALL)

REAL*8
REAL*8
REAL*8
REAL*8
REAL*8
REAL=*8

GG

P1(4), P2(4)
P3(4)

EP1(4), EP2(4)
EP3(4)

AALL

input
input
input
input
input
output

~

1. the momenta of particles with vertices are taken to flow in.

2. GG : coupling constant for vertex.

3. P1(4),P2(4),P3(4) : momenta of the vector bosons.

4. EP1(4) ,EP2(4) ,EP3(4) : polarization vectors of vector bosons.

5. AALL : calculated result of vertex amplitude for given polarization states.

Four vector vertex

This calculates vertex amplitudes for four vector boson vertex, presented in Eq.(2.156).

-

N

CALL VVVV(GG,EP1,EP2,EP3,EP4,AALL)

REAL*8
REAL*8
REAL*8
REAL=*8

GG

EP1(4), EP2(4)
EP3(4), EP4(4)
AALL

input
input
input
output

~

1. the momenta of particles with vertices are taken to flow in.

2. GG : coupling constant for vertex.

3. EP1(4) ,EP2(4) ,EP3(4) ,EP4(4) :polarization vectors of vector bosons.

4. AALL : calculated result of vertex amplitude for given polarization states.

7.3. PROGRAM PACKAGE CHANEL 233

Scalar-vector-vector vertex

This calculates vertex amplitudes for vector bosons-scalar boson vertex, presented in
Eq.(2.158).

CALL VVS(GG,EP1,EP2,AALL)

REAL*8 GG input
REAL*8 EP1(4), EP2(4) input
REAL*8 AALL output

1. the momenta of particles with vertex are taken to flow in. This subroutine can
be used for VV SS vertex.

2. GG : coupling constant for vertex.
3. EP1(4) ,EP2(4) : polarization vectors of vector bosons.

4. AALL : calculated result of vertex amplitude for given polarization states.

Scalar-scalar-vector vertex

This calculates vertex amplitudes for vector boson-scalar bosons vertex, presented in
Eq.(2.157).

4 N
CALL SSV(GG,P1,P2,EP,AALL)
REAL*8 GG input
REAL*8 P1(4), P2(4) input
REAL*8 EP(4) input
REAL*8 AALL output
- /

1. GG : coupling constant for vertex.
2. P1(4),P2(4) : momenta of vector bosons.
3. EP(4) : polarization vector of vector boson.

4. AALL : calculated result of vertex amplitude for given polarization states.

234 CHAPTER 7. LIBRARIES FOR THE AMPLITUDE CALCULATION

7.3.3 Effective vertices

Four fermion vertex

This calculate fermion-fermion-interactions mediated by a vector boson.

4 I
CALL FFFF(N, AJM1i, AJM2, EM, AALL)
INTEGER N input
COMPLEX*16 AJM1(4,2,2) input
COMPLEX*16 AJM2(4,2,2) input
REAL*8 EM(4) input
COMPLEX*16 AALL(2,2,2,2) output
N /

1. N : no. of polarization states for intermediated vector boson.

2. AJM1(4,2,2), AIM2(4,2,2) : vertex amplitudes for fermion-fermion-vector bo-
son vertices calculated by subroutine FFV.

3. EM(4) : weight factors to reconstruct the numerator of the vector boson propa-
gator calculated by subroutine POLA.

4. AALL(2,2,2,2) : calculated results for all possible helicity states for fermions.

Fermion-fermion-vector-vector vertex

This calculate fermion-fermion going to vector boson pair mediated by a vector boson.

a CALL FFVV(N, AJMF, AJMV, EM, AALL))
INTEGER N input
COMPLEX*16 AJMF(4,2,2) input
COMPLEX*16 AJMV (4,4,4) input
REAL*8 EM(4) input
COMPLEX*16 AALL(2,2,4,4) output
o /

1. N : no. of polarization states for intermediated vector boson.

2. AJVF(4,2,2) : vertex amplitude for fermion-fermion-vector boson vertex calcu-
lated by subroutine FFV.

3. AJMV(4,4,4) : vertex amplitude for three vector boson vertex calculated by
subroutine VV'V.

7.3. PROGRAM PACKAGE CHANEL 235
4. EM(4) : weight factors to reconstruct the numerator of the vector boson propa-
gator calculated by subroutine POLA.

b. AALL(2,2,4,4) : calculated results for all possible helicity and polarization
states.

236 Appendix

When the user combines his own subprograms with generated source programs of
integration and event generation, the user should be careful not to use the names of
subprograms and named common block, because the program does not work when the
user uses the same names as predefined ones in this system.

The list of the names of subprograms generated or internally used, is shown in List
A.1, and the list of the names of common block generated or internally used, is shown
in List A.2.

AMnnnn BSDATE BSUNIX FFV SHUPDT SMINIV SPLTQ XHGRID
AMPARM BSDSUM BSUSRI FFVO SMCONF SMPRPD SPMAIN XHINIT
AMPORD BSGDEF BSUTIM FUNC SMCONS SMSSS SPRING XHORDR
AMPSUM BSINIT BSWRIT KINEM SMCONV SMSSSS SPTERM XHPLOT
AMPTBL BSISUM DHFILL KINIT SMEXTF SMSSV SSV XHRNGE
BASES BSLIST DHINIT PHASEQ SMEXTV SMSSVV USERIN XHSAVE
BHINIT BSMAIN DHPLOT POL SMFFS SMSVV ~ USROUT XHSCLE
BHPLOT BSORDR DRLOOP POLA SMFFV SMVVV VVS

BHRSET BSPRNT DRN SETMAS SMGGG SMVVVV VVV

BHSAVE BSREAD DRNSET SHCLER SMGGGG SPEVNT VVVV

BHSUM BSTCNV FFS SHPLOT SMINIF SPINIT XHCHCK

BSCAST BSTIME FFSO SHRSET SMINIT SPLT XHFILL

List A.1 A list of the names of subprograms

AMnnnn means the corresponding subroutines to the nnnn-th graph. When 28 graphs
are generated, then nnnn varies from 0001 to 0028.

AMCNST AMMASS AMWORK BASE4 BSRSLT NINFO SMDBGG SPRNG1
AMCPLC AMREG BASEO BASES BSWORK PLOTB SMEXTP XHCNTL
AMEXTR AMSLCT BASE1 BASE6 BTIME PLOTH SMGAUG
AMGMMA AMSPIN BASE2 BDATE LOOPO RANDM SMGAUS
AMGRPH AMWORI BASE3 BSCNTL LOOP1 SMATBL SP4VEC

List A.2 A list of names of named common block

- J

”

In the following index, the mark “(v)” is for vector version.

Appendix

AMnnnn
AMPARM
AMPORD
AMPSUM
AMPTBL
BHINIT
DHFILL
DHINIT
DVFILL
FFFF
FFS
FFSO
FFV
FFVO
FFVV
FUNC
INCL1

INCL2
INCLH
INCLVB
INCLVS
KINEM

KINIT

calculates amplitude of the nnnn-th graph, 78, 87, 165(v), 169(v)
defines of coupling constants and others, 78, 82, 165(v)
arranges amplitudes, 78, 88

sums matrix elements over the helicity states, 78, 165(v)

calls AMnnnn to calculate amplitudes, 78, 85, 165(v), 167(v)
initializes the numbers of histograms and scatter plots, 111, 120
fills scatter plots, 115, 121

initializes scatter plots, 111, 121

fills scatter plots, 178(v)

calculates four fermion vertex, 231

calculates scalar-fermion vertex, 228

calculates scalar-massless fermion vertex, 228

calculates vector-fermion vertex, 227

calculates vector-massless fermion vertex, 226

calculates fermion-fermion-vector-vector vertex, 231

calculates the numerical values of differential cross section, 78, 114, 134

237

defines the common variables for masses, amplitude tables etc, 78, 83, 165(v),

166(v)
defines the work space for AMPTBL, 78, 165(v)

defines the number of histograms and scatter plots, 78, 109, 165(v), 166(v)
defines the common for integration variables etc, 165(v), 166(v), 172(v), 176(v)

defines the vector length, 165(v), 166(v), 172(v)

derives particle four momenta from the integration variables, 78, 93, 165(v),

179(v)
initializes kinematics, 78, 90, 165(v), 166(v), 171(v)

238

MAINBS
MAINSP
MAINVB
MAINVS
PHASEQ
POLA
SETMAS
SMCONF
SMCONS
SMCONV
SMEXTF
SMEXTV
SMFFS
SMFFV
SMGGG
SMGGGG
SMINIT
SMINTF
SMINTV
SMPRPD
SMSSS
SMSSSS
SMSSV
SMSSVV
SMSVV
SMVVV
SMVVVV
SPEVNT
SPINIT
SPLT
SPLTQ
SPTERM
SSV
TEST
TESTV

USERIN
USROUT
VBFNCT

VVS
VvV
VVVV
XHFILL
XHINIT
XVFILL

Appendix

is the main program for the integration, 78, 108

is the main program for the event generation, 78, 132

is the main program for the integration for vector computer, 165(v), 171(v)
is main program for the event generation for vector computer, 166(v)
calculates phase factors of the massive fermion, 226

calculates polarization vector, 225

defines of masses and decay widths of particles, 69, 78, 79, 165(v)
connects by a fermion propagator, 87, 223

connects by a scalar propagator, 223

connects by a vector propagator, 87, 223

calculates external fermion, 86, 212

calculates external vector boson, 86, 213

calculates fermion-fermion-scalar vertex coupling, 217

calculates fermion-fermion-vector vertex coupling, 87, 216

calculates gluon-gluon-gluon vertex coupling, 219

calculates gluon-gluon-gluon-gluon vertex coupling, 222

checks the version of library, 82, 224

calculates numerator of fermion propagator, 87, 213

calculates numerator of vector boson propagator, 87, 214

calculates multiply denominator of propagator, 87, 215

calculates scalar-scalar-scalar vertex coupling, 221

calculates scalar-scalar-scalar-scalar vertex coupling, 223

calculates scalar-scalar-vector vertex coupling, 220

calculates scalar-scalar-vector-vector vertex coupling, 222

calculates scalar-vector-vector vertex coupling, 219

calculates vector-vector-vector vertex coupling, 87, 218

calculates vector-vector-vector-vector vertex coupling, 221

saves four vectors in the event generation, 78, 135, 166(v), 189(v)
initializes routine for the event generation, 78, 135, 166(v), 189(v)

splits four momentum to massless ones, 226

splits four momentum, 225

is called at the termination in the event generation, 78, 136, 166(v), 189(v)
calculates scalar-scalar-vector vertex, 230

works as the main program for testing gauge invariance, 78, 99

works as the main program for testing gauge invariance for vector computer,
165(v), 193(v)

initializes BASES and user’s parameters, 78, 90, 109, 165(v), 166(v), 171(v)
prints the amplitude summary table, 78, 106, 165(v), 171(v)

calculates the numerical values of differential cross section for vector computer,
165(v), 166(v), 173(v)

calculates scalar-vector-vector vertex, 230

calculates three vector vertex, 229

calculates four vector vertex, 229

fills histograms, 115, 121

initializes histograms, 111, 121

fills histogram for vector computer, 178(v)

Appendix 239

e Getting system and information
Any request on the system should be mailed to grace@minami.kek. jp.

e Changing Lagrangian
GRACE system has almost no freedom to change Lagrangian except for deleting
particles or interactions. For introduction of a new type of interaction, one must
prepare a FORTRAN subroutine, which calculates helicity amplitudes of the ver-
tex in a similar way to CHANEL library. Moreover, modifications of the FORTRAN
source code generator is necessary in order to include corresponding subroutine
calls in the generated code.

e Testing generated code
There are several possibilities that the generated FORTRAN code produces false
result (see section 2.6 p.55 and chapter 3 p.72, 96, 101). Especially one must pay
attention to numerical cancellation. It is desirable to compare with the result of
calculation in quadruple precision.

e Gauge parameter
The way of specifying the gauge parameter in the generated FORTRAN code is
slightly different from one in CHANEL library. Unitary gauge is selected in CHANEL
library when gauge parameter is set to a greater value than 100. However, in the
generated code, unitary gauge is selected by another variable (see section 3.2.1),
with which denominators of propagators are correctly calculated and irrelevant
graphs are omitted from the calculation.

e Decay width
Since gauge invariance and gauge cancellation is violated by non-zero value of de-
cay width of particles, unexpectedly large value of cross section may be obtained
at higher energy (see section 2.6).

e Strong coupling constant
Strong coupling constant a,(Q?) should be supplied in kinem even if it is taken
to be constant(see section 2.3.3).

¢ Quark mixing matrix
In the present version of GRACE, the mixing matrix is unity(see section 2.3.2).

e Numerical instability
When the considered process contains a virtual photon exchanged in the t-
channel, such as peripheral diagrams in ete™ — efe putu or efe” — ete v
and the phase space allows extremely small values to the virtual photon mass,
serious instability will take place in the numerical calculation(see section 2.6).

240 Appendix

e Convergence behavior of numerical integration
The accuracy of each iteration must be stable in the integration step. When the
integration variables does not suit for the integrand, it is unstable or fluctuate
iteration by iteration and jumps suddenly to a big value in the worst case (see
sections 2.6 and 3.5.6).

e Event generation
If the number trial distribution has a long tail, the efficiency of event generation
is poor(see 3.6.4).

Bibliography

1]
2]
3]

8]
[9]

K. Aoki et al., Suppl. Prog. Theor. Phys. 73, 1982.
T. Muta, “Foundations of Quantum Chromodynamics”, World Scientific, 1987.

T. Kaneko, in “New Computing Techniques in Physics Research”, ed. D. Perret-
Gallix and W. Wojcik, p.555, 1990, Edition du CNRS, Paris,

T. Kaneko and H. Tanaka, in “Proc. of the Second Workshop on JLC”, ed. S.
Kawabata, p.250, 1991, KEK Proceeding 91-10,

T. Kaneko et al., in “New Computing Techniques in Physics Research II”, ed. D.
Perret-Gallix, p.659, 1992, Edition du CNRS, Paris.

H. Tanaka, Comput. Phys. Commun. 58(1990)153.
H. Tanaka, T. Kaneko and Y. Shimizu, Comput. Phys. Commun. 64(1991)149.
S. Kawabata, Comput. Phys. Commun. 41(1986)127.

See for example,

F. Harary, “Graph Theory”, Addison-Wesley, Reading, Massachusetts, 1972.

For enumeration of various classes of graphs,

F. Harary and E.M. Palmer, “Graphical Enumeration”, Academic Press, New
York, 1973.

For computer algorithms,

A.V. Aho, J.E. Hopcroft and J.D. Ullman, “The Design and analysis of Computer
Algorithms”; Addison-Wesley, Reading, Massachusetts, 1972;

L. Kucera, “Combinatorial Algorithms”, Adam Hilger, Bristol, 1990.

J.Fujimoto et al., Suppl. Prog. Theor. Phys. 100, 1991.

T. Kaneko and S. Kawabata, Comput. Phys. Commun. 55 (1989) 141.

241

