Quadpack Computation of IR-divergent integrals

E. de Doncker¹ J. Fujimoto² N. Hamaguchi ³ T. Ishikawa² Y. Kurihara² Y. Shimizu² F. Yuasa²

¹Department of Computer Science, Western Michigan University, Kalamazoo MI 49008. U. S.

²High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki, 305-0801, Japan

³Hitachi, Ltd., Japan

- Introduction
 - Infrared singularity
 - Digression on extrapolation
- Application to massless one-loop vertex
 - Asymptotics one off-shell, two on-shell particles
- 3 Hypergeometric function and threshold singularity
- Vertex with one on-shell and two off-shell particles

- Introduction
 - Infrared singularity
 - Digression on extrapolation
- Application to massless one-loop vertex
 - Asymptotics one off-shell, two on-shell particles
- 3 Hypergeometric function and threshold singularity
- 4 Vertex with one on-shell and two off-shell particles

- Introduction
 - Infrared singularity
 - Digression on extrapolation
- Application to massless one-loop vertex
 - Asymptotics one off-shell, two on-shell particles
- 3 Hypergeometric function and threshold singularity
- Vertex with one on-shell and two off-shell particles

- Introduction
 - Infrared singularity
 - Digression on extrapolation
- Application to massless one-loop vertex
 - Asymptotics one off-shell, two on-shell particles
- 3 Hypergeometric function and threshold singularity
- 4 Vertex with one on-shell and two off-shell particles

- Introduction
 - Infrared singularity
 - Digression on extrapolation
- 2 Application to massless one-loop vertex
 - Asymptotics one off-shell, two on-shell particles
- 3 Hypergeometric function and threshold singularity
- Vertex with one on-shell and two off-shell particles

Sample problem: Characteristics

Integral

$$I(\varepsilon) = \int_0^1 dx \int_0^1 dy \, \frac{1}{(x+y)^{2-\varepsilon}} = \frac{2^{\varepsilon} - 2}{(\varepsilon - 1)\varepsilon} = 2\frac{\varphi(\varepsilon)}{\varepsilon} \tag{1}$$

where $\varphi(\varepsilon) = (2^{\varepsilon-1}-1)/(\varepsilon-1)$

converges for $\varepsilon>0$ and has a non-integrable singularity when $\varepsilon\leq 0$. Taylor expansion of $\varphi(\varepsilon)$ around $\varepsilon=0$ results in

$$I(\varepsilon) \sim \frac{C_{-1}}{\varepsilon} + C_0 + C_1 \varepsilon + \dots$$
 (2)

with $C_{-1} = 1$, $C_0 = 1 - \log 2$, $C_1 = 1 - \log 2 - \frac{1}{2} \log^2 2$.

According to the asymptotic behavior, we can explore linear or nonlinear extrapolation for the computation of the coefficients of the leading terms.

Sample problem: Characteristics

Integral

$$I(\varepsilon) = \int_0^1 dx \int_0^1 dy \, \frac{1}{(x+y)^{2-\varepsilon}} = \frac{2^{\varepsilon} - 2}{(\varepsilon - 1)\varepsilon} = 2\frac{\varphi(\varepsilon)}{\varepsilon} \tag{1}$$

where $\varphi(\varepsilon) = (2^{\varepsilon-1} - 1)/(\varepsilon - 1)$

converges for $\varepsilon>0$ and has a non-integrable singularity when $\varepsilon\leq 0$. Taylor expansion of $\varphi(\varepsilon)$ around $\varepsilon=0$ results in

$$I(\varepsilon) \sim \frac{C_{-1}}{\varepsilon} + C_0 + C_1 \varepsilon + \dots$$
 (2)

with
$$C_{-1}=1,\ C_0=1-\log 2,\ C_1=1-\log 2-\frac{1}{2}\log^2 2.$$

According to the asymptotic behavior, we can explore linear or nonlinear extrapolation for the computation of the coefficients of the leading terms.

Linear system

$$\varepsilon_{\ell}I(\varepsilon_{\ell}) = \sum_{k=0}^{n-1} C_{k-1} \, \varepsilon_{\ell}^{k}, \quad 1 \le \ell \le n \tag{3}$$

special case of $S_{\ell} = \sum_{k=0}^{n-1} C_{k-1} \varphi_k(\varepsilon_{\ell}), \quad 1 \leq \ell \leq n$

Numerical integration

 $I(\varepsilon) \approx I(\varepsilon)$ for $\varepsilon > 0$ is affected by the integrand singularity of (1) at x = y = 0 on the boundary of the integration domain, when $2 > 2 - \varepsilon > 0$.

Recursive (repeated) integration with the 1D integration code DOAGSE from QUADPACK [8] is equipped to handle algebraic end-point singularities in each

Linear system

$$\varepsilon_{\ell}I(\varepsilon_{\ell}) = \sum_{k=0}^{n-1} C_{k-1} \varepsilon_{\ell}^{k}, \quad 1 \le \ell \le n$$
(3)

special case of
$$S_{\ell} = \sum_{k=0}^{n-1} C_{k-1} \varphi_k(\varepsilon_{\ell}), \quad 1 \leq \ell \leq n$$

Numerical integration

 $\hat{I}(\varepsilon) \approx I(\varepsilon)$ for $\varepsilon > 0$ is affected by the integrand singularity of (1) at x = y = 0 on the boundary of the integration domain, when $2 > 2 - \varepsilon > 0$.

Recursive (repeated) integration with the 1D integration code DQAGSE from QUADPACK [8] is equipped to handle algebraic end-point singularities in each coordinate direction.

Linear system

$$\varepsilon_{\ell}I(\varepsilon_{\ell}) = \sum_{k=0}^{n-1} C_{k-1} \, \varepsilon_{\ell}^{\ k}, \quad 1 \le \ell \le n \tag{3}$$

special case of $S_{\ell} = \sum_{k=0}^{n-1} C_{k-1} \varphi_k(\varepsilon_{\ell}), \quad 1 \leq \ell \leq n$

Numerical integration

 $\hat{I}(\varepsilon) \approx I(\varepsilon)$ for $\varepsilon > 0$ is affected by the integrand singularity of (1) at x = y = 0 on the boundary of the integration domain, when $2 > 2 - \varepsilon > 0$.

Recursive (repeated) integration with the 1D integration code DQAGSE from QUADPACK [8] is equipped to handle algebraic end-point singularities in each coordinate direction.

Linear system

$$\varepsilon_{\ell}I(\varepsilon_{\ell}) = \sum_{k=0}^{n-1} C_{k-1} \varepsilon_{\ell}^{k}, \quad 1 \le \ell \le n$$
(3)

special case of $S_{\ell} = \sum_{k=0}^{n-1} C_{k-1} \varphi_k(\varepsilon_{\ell}), \quad 1 \leq \ell \leq n$

Numerical integration

 $\hat{I}(\varepsilon) \approx I(\varepsilon)$ for $\varepsilon > 0$ is affected by the integrand singularity of (1) at x = y = 0 on the boundary of the integration domain, when $2 > 2 - \varepsilon > 0$.

Recursive (repeated) integration with the 1D integration code DQAGSE from QUADPACK [8] is equipped to handle algebraic end-point singularities in each coordinate direction.

- Introduction
 - Infrared singularity
 - Digression on extrapolation
- 2 Application to massless one-loop vertex
 - Asymptotics one off-shell, two on-shell particles
- 3 Hypergeometric function and threshold singularity
- 4 Vertex with one on-shell and two off-shell particles

• For sequence $\{S(\varepsilon_\ell)\}$, an extrapolation is performed to create sequences that convergence to the limit $\mathcal{S} = \lim_{\varepsilon_\ell \to 0} S(\varepsilon_\ell)$ faster than the given sequence, based on

Asymptotic expansion

$$S(\varepsilon) \sim S + a_0 \varphi_0(\varepsilon) + a_2 \varphi_2(\varepsilon) + \dots$$

- ε may be a parameter of the problem or of the method. For example in Romberg integration, ε_ℓ = h_ℓ is the step size.
- A linear extrapolation method solves (implicitly or explicitly [2]) linear systems of the form

$$S(arepsilon_\ell) = a_0 + a_1 arphi_1(arepsilon_\ell) + \dots a_
u arphi_
u(arepsilon_\ell), \quad \ell = 0, \dots,
u;$$

of order $(\nu+1)\times(\nu+1)$ in unknowns $a_0,\ldots a_{\nu}$ are solved for increasing values of ν

• For sequence $\{S(\varepsilon_\ell)\}$, an extrapolation is performed to create sequences that convergence to the limit $\mathcal{S} = \lim_{\varepsilon_\ell \to 0} S(\varepsilon_\ell)$ faster than the given sequence, based on

Asymptotic expansion

$$S(\varepsilon) \sim S + a_0 \varphi_0(\varepsilon) + a_2 \varphi_2(\varepsilon) + \dots$$

- ε may be a parameter of the problem or of the method. For example in Romberg integration, ε_ℓ = h_ℓ is the step size.
- A linear extrapolation method solves (implicitly or explicitly [2]) linear systems of the form

$$S(\varepsilon_{\ell}) = a_0 + a_1 \varphi_1(\varepsilon_{\ell}) + \dots a_{\nu} \varphi_{\nu}(\varepsilon_{\ell}), \quad \ell = 0, \dots, \nu;$$

of order $(\nu + 1) \times (\nu + 1)$ in unknowns $a_0, \dots a_{\nu}$ are solved for increasing values of ν .

• For sequence $\{S(\varepsilon_\ell)\}$, an extrapolation is performed to create sequences that convergence to the limit $\mathcal{S} = \lim_{\varepsilon_\ell \to 0} S(\varepsilon_\ell)$ faster than the given sequence, based on

Asymptotic expansion

$$S(\varepsilon) \sim S + a_0 \varphi_0(\varepsilon) + a_2 \varphi_2(\varepsilon) + \dots$$

- ε may be a parameter of the problem or of the method. For example in Romberg integration, ε_ℓ = h_ℓ is the step size.
- A linear extrapolation method solves (implicitly or explicitly [2]) linear systems of the form

$$S(\varepsilon_{\ell}) = a_0 + a_1 \varphi_1(\varepsilon_{\ell}) + \dots a_{\nu} \varphi_{\nu}(\varepsilon_{\ell}), \quad \ell = 0, \dots, \nu;$$

of order $(\nu+1)\times(\nu+1)$ in unknowns $a_0,\ldots a_{\nu}$ are solved for increasing values of ν .

- The coefficients $\varphi_k(\varepsilon)$ need to be known explicitly in order to compute the system coefficients for linear extrapolation.
- If the functions of ε are not known, nonlinear extrapolation or convergence acceleration may be applied [9, 11, 10, 7, 4].
- As an example of a nonlinear extrapolation method, the ε-algorithm implements the sequence-to-sequence transformation by [9] recursively;
- \bullet can be applied if the φ functions are of the form

$$\varphi_k(\varepsilon) = \varepsilon^{\beta_k} \log^{\nu_k}(\varepsilon),$$

under some conditions on ν_k and β_k and if a geometric sequence is used for ε ;

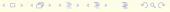
• but the actual form of the underlying ε -dependency does not need to be specified.

- The coefficients $\varphi_k(\varepsilon)$ need to be known explicitly in order to compute the system coefficients for linear extrapolation.
- If the functions of ε are not known, nonlinear extrapolation or convergence acceleration may be applied [9, 11, 10, 7, 4].
- As an example of a nonlinear extrapolation method, the ε-algorithm implements the sequence-to-sequence transformation by [9] recursively;
- \bullet can be applied if the φ functions are of the form

$$\varphi_k(\varepsilon) = \varepsilon^{\beta_k} \log^{\nu_k}(\varepsilon),$$

under some conditions on ν_k and β_k and if a geometric sequence is used for ε ;

• but the actual form of the underlying ε -dependency does not need to be specified.

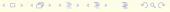


- The coefficients $\varphi_k(\varepsilon)$ need to be known explicitly in order to compute the system coefficients for linear extrapolation.
- If the functions of ε are not known, nonlinear extrapolation or convergence acceleration may be applied [9, 11, 10, 7, 4].
- As an example of a nonlinear extrapolation method, the ε-algorithm implements the sequence-to-sequence transformation by [9] recursively;
- can be applied if the φ functions are of the form

$$\varphi_k(\varepsilon) = \varepsilon^{\beta_k} \log^{\nu_k}(\varepsilon),$$

under some conditions on ν_k and β_k and if a geometric sequence is used for ε ;

 but the actual form of the underlying ε-dependency does not need to be specified.



- ullet The coefficients $\varphi_k(arepsilon)$ need to be known explicitly in order to compute the system coefficients for linear extrapolation.
- If the functions of ε are not known, nonlinear extrapolation or convergence acceleration may be applied [9, 11, 10, 7, 4].
- As an example of a nonlinear extrapolation method, the ε-algorithm implements the sequence-to-sequence transformation by [9] recursively;
- lacktriangledight can be applied if the φ functions are of the form

$$\varphi_k(\varepsilon) = \varepsilon^{\beta_k} \log^{\nu_k}(\varepsilon),$$

under some conditions on ν_k and β_k and if a geometric sequence is used for ε ;

 but the actual form of the underlying ε-dependency does not need to be specified.



- The coefficients $\varphi_k(\varepsilon)$ need to be known explicitly in order to compute the system coefficients for linear extrapolation.
- If the functions of ε are not known, nonlinear extrapolation or convergence acceleration may be applied [9, 11, 10, 7, 4].
- As an example of a nonlinear extrapolation method, the ε-algorithm implements the sequence-to-sequence transformation by [9] recursively;
- lacktriangledight can be applied if the φ functions are of the form

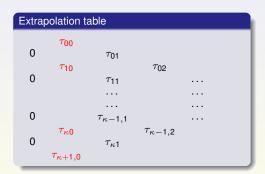
$$\varphi_k(\varepsilon) = \varepsilon^{\beta_k} \log^{\nu_k}(\varepsilon),$$

under some conditions on ν_k and β_k and if a geometric sequence is used for ε ;

 but the actual form of the underlying ε-dependency does not need to be specified.

 $\tau_{\kappa,-1}=0$

ϵ -algorithm recursion



With original sequence S_{κ} , for $\kappa = 0, 1, \dots$:

$$\begin{aligned} & \tau_{\kappa 0} = \mathcal{S}_{\kappa} \\ & \tau_{\kappa, \lambda + 1} = \tau_{\kappa + 1, \lambda + 1} + \frac{1}{\tau_{\kappa + 1, \lambda} - \tau_{\kappa \lambda}} \end{aligned}$$

Sample problem: Linear extrapolation results

	NUMERICAL	INTEGRATIO	N (DQAGSE) ²	EXTRAPOLATION RELATIVE ERRORS			
ℓ	REL. ERR.	# EVALS	TIME (s)	C_1	C_0	C ₁	
1	1.90e-16	33,165	8.73e-03	1.28e-02	2.02e-01		
2	1.00e-15	36,915	7.43e-03	5.37e-04	1.55e-02	2.00e-01	
3	3.29e-15	41,325	8.29e-03	1.21e-06	5.85e-04	1.42e-02	
4	1.45e-14	41,775	8.41e-03	1.70e-07	1.27e-05	5.04e-04	
5	1.39e-14	41,865	8.39e-03	1.37e-09	1.56e-07	9.72e-06	
6	1.69e-14	42,045	8.42e-03	7.30e-12	1.20e-09	1.11e-07	
7	2.18e-16	42,165	8.44e-03	1.50e-13	3.88e-11	4.56e-09	
8	1.73e-14	67,755	1.35e-02	2.84e-13	7.18e-11	9.14e-09	
9	1.01e-14	67,845	1.35e-02	5.06e-14	9.66e-12	7.20e-09	
10	1.35e-14	140,655	1.13e-01	5.63e-13	3.19e-10	9.73e-08	

Table: Integration and extrapolation results using (DQAGSE)² for IR sample problem (1)-(2), integ. error tolerances $t_r = 10^{-13}$ (outer), 5×10^{-14} (inner); solution based on linear system (3); integration and extrapolation relative errors are given.

- The sequence of ε_ℓ is based on a type of sequence used by Bulirsch [3] in the context of Romberg integration: $\varepsilon = \varepsilon_\ell = 1/b_\ell, \ \ell = 1, 2, \ldots$, where $b_\ell = 2, 3, 4, 6, 8, 12, 16, 24, \ldots$ (alternating powers of 2 and 1.5 times the preceding power of 2).
- The Bulirsch sequence can be used with linear extrapolation, not with nonlinear extrapolation by the ε-algorithm;
- is in between geometric and harmonic sequence with repect to stability of the extrapolation, and also with respect to the expense in integrations for the system RHS.
- Extrapolation times negligible compared to integration
- the successive linear systems are independent; only one is needed for solution but successive ones can be used for estimating accuracy.
- Similar results are obtained with geometric progressions of $\varepsilon_\ell = 1/b^\ell$ with, e.g., b = 1.2, 1.5 or 2. The amount of work in the integration, as reflected by the number of integrand evaluations, is considerably higher especially with b = 2.
- Using a geometric sequence, the ϵ -algorithm [9, 11] is able to transform the divergent sequence of $I(\varepsilon_\ell)$, $\ell=1,2,\ldots$ for a non-linear extrapolation to C_0 .

- The sequence of ε_ℓ is based on a type of sequence used by Bulirsch [3] in the context of Romberg integration: $\varepsilon = \varepsilon_\ell = 1/b_\ell, \ \ell = 1, 2, \ldots$, where $b_\ell = 2, 3, 4, 6, 8, 12, 16, 24, \ldots$ (alternating powers of 2 and 1.5 times the preceding power of 2).
- The Bulirsch sequence can be used with linear extrapolation, not with nonlinear extrapolation by the ε-algorithm;
- is in between geometric and harmonic sequence with repect to stability of the extrapolation, and also with respect to the expense in integrations for the system RHS.
- Extrapolation times negligible compared to integration
- the successive linear systems are independent; only one is needed for solution but successive ones can be used for estimating accuracy.
- Similar results are obtained with geometric progressions of $\varepsilon_\ell=1/b^\ell$ with, e.g., b=1.2,1.5 or 2. The amount of work in the integration, as reflected by the number of integrand evaluations, is considerably higher especially with b=2.
- Using a geometric sequence, the ϵ -algorithm [9, 11] is able to transform the divergent sequence of $I(\epsilon_\ell)$, $\ell=1,2,\ldots$ for a non-linear extrapolation to C_0 .

- The sequence of ε_ℓ is based on a type of sequence used by Bulirsch [3] in the context of Romberg integration: $\varepsilon = \varepsilon_\ell = 1/b_\ell, \ \ell = 1, 2, \ldots$, where $b_\ell = 2, 3, 4, 6, 8, 12, 16, 24, \ldots$ (alternating powers of 2 and 1.5 times the preceding power of 2).
- The Bulirsch sequence can be used with linear extrapolation, not with nonlinear extrapolation by the ε-algorithm;
- is in between geometric and harmonic sequence with repect to stability of the extrapolation, and also with respect to the expense in integrations for the system RHS.
- Extrapolation times negligible compared to integration
- the successive linear systems are independent; only one is needed for solution but successive ones can be used for estimating accuracy.
- Similar results are obtained with geometric progressions of $\varepsilon_\ell = 1/b^\ell$ with, e.g., b = 1.2, 1.5 or 2. The amount of work in the integration, as reflected by the number of integrand evaluations, is considerably higher especially with b = 2.
- Using a geometric sequence, the ϵ -algorithm [9, 11] is able to transform the divergent sequence of $I(\varepsilon_\ell)$, $\ell=1,2,\ldots$ for a non-linear extrapolation to C_0 .

- The sequence of ε_ℓ is based on a type of sequence used by Bulirsch [3] in the context of Romberg integration: $\varepsilon = \varepsilon_\ell = 1/b_\ell, \ \ell = 1, 2, \ldots$, where $b_\ell = 2, 3, 4, 6, 8, 12, 16, 24, \ldots$ (alternating powers of 2 and 1.5 times the preceding power of 2).
- The Bulirsch sequence can be used with linear extrapolation, not with nonlinear extrapolation by the ε-algorithm;
- is in between geometric and harmonic sequence with repect to stability of the extrapolation, and also with respect to the expense in integrations for the system RHS.
- Extrapolation times negligible compared to integration;
- the successive linear systems are independent; only one is needed for solution but successive ones can be used for estimating accuracy.
- Similar results are obtained with geometric progressions of $\varepsilon_\ell=1/b^\ell$ with, e.g., b=1.2,1.5 or 2. The amount of work in the integration, as reflected by the number of integrand evaluations, is considerably higher especially with b=2.
- Using a geometric sequence, the ϵ -algorithm [9, 11] is able to transform the divergent sequence of $I(\varepsilon_\ell),\ \ell=1,2,\ldots$ for a non-linear extrapolation to C_0

- The sequence of ε_ℓ is based on a type of sequence used by Bulirsch [3] in the context of Romberg integration: $\varepsilon = \varepsilon_\ell = 1/b_\ell, \ \ell = 1, 2, \ldots$, where $b_\ell = 2, 3, 4, 6, 8, 12, 16, 24, \ldots$ (alternating powers of 2 and 1.5 times the preceding power of 2).
- The Bulirsch sequence can be used with linear extrapolation, not with nonlinear extrapolation by the ε-algorithm;
- is in between geometric and harmonic sequence with repect to stability of the extrapolation, and also with respect to the expense in integrations for the system RHS.
- Extrapolation times negligible compared to integration;
- the successive linear systems are independent; only one is needed for solution but successive ones can be used for estimating accuracy.
- Similar results are obtained with geometric progressions of $\varepsilon_\ell=1/b^\ell$ with, e.g., b=1.2,1.5 or 2. The amount of work in the integration, as reflected by the number of integrand evaluations, is considerably higher especially with b=2.
- Using a geometric sequence, the ϵ -algorithm [9, 11] is able to transform the divergent sequence of $I(\varepsilon_\ell)$, $\ell=1,2,\ldots$ for a non-linear extrapolation to C_0 .

- Introduction
 - Infrared singularity
 - Digression on extrapolation
- 2 Application to massless one-loop vertex
 - Asymptotics one off-shell, two on-shell particles
- 3 Hypergeometric function and threshold singularity
- 4 Vertex with one on-shell and two off-shell particles

One off-shell, two on-shell particles

A massless one-loop vertex non-scalar integral for the case of one off-shell particle (with $p_3^2 \neq 0$) and two on-shell particles ($p_1^2 = p_2^2 = 0$) is given in [5] by

$$J_3(0,0,p_3^2;n_x,n_y) = \frac{1}{(4\pi)^2} \lim_{\varepsilon \to 0} J_3^{n_x,n_y}(\varepsilon)$$

Integra

$$I_{3}^{n_{x},n_{y}}(\varepsilon) = \frac{\varepsilon \Gamma(-\varepsilon)}{(4\pi\mu_{R}^{2})^{\varepsilon}} \int_{0}^{1} dx \int_{0}^{1-x} dy \frac{x^{n_{x}}y^{n_{y}}}{(-\rho_{3}^{2}xy - i0)^{1-\varepsilon}}$$

$$= \varepsilon \Gamma(-\varepsilon) \left(\frac{-\tilde{\rho_{3}}^{2}}{4\pi\mu_{R}^{2}}\right)^{\varepsilon} \frac{1}{-\rho_{3}^{2}} \frac{B(n_{x} + \varepsilon, n_{y} + \varepsilon)}{n_{x} + n_{y} + 2\varepsilon}$$

$$(4)$$

 $n_X, n_Y \geq 0$ integers, μ_R^2 : energy scale normalization constant.

One off-shell, two on-shell particles

A massless one-loop vertex non-scalar integral for the case of one off-shell particle (with $p_3^2 \neq 0$) and two on-shell particles ($p_1^2 = p_2^2 = 0$) is given in [5] by

$$J_3(0,0,p_3^2;n_x,n_y) = \frac{1}{(4\pi)^2} \lim_{\varepsilon \to 0} J_3^{n_x,n_y}(\varepsilon)$$

Integral

$$I_{3}^{n_{x},n_{y}}(\varepsilon) = \frac{\varepsilon \Gamma(-\varepsilon)}{(4\pi\mu_{R}^{2})^{\varepsilon}} \int_{0}^{1} dx \int_{0}^{1-x} dy \frac{x^{n_{x}}y^{n_{y}}}{(-\rho_{3}^{2}xy - i0)^{1-\varepsilon}}$$

$$= \varepsilon \Gamma(-\varepsilon) \left(\frac{-\tilde{\rho_{3}}^{2}}{4\pi\mu_{R}^{2}}\right)^{\varepsilon} \frac{1}{-\rho_{3}^{2}} \frac{B(n_{x} + \varepsilon, n_{y} + \varepsilon)}{n_{x} + n_{y} + 2\varepsilon}$$

$$(4)$$

 $n_x, n_y \ge 0$ integers, μ_R^2 : energy scale normalization constant.

Asymptotics

There is no IR divergence and ε can be set to 0 when n_x and n_y are both non-zero. When one of n_x and n_y is zero and the other is not, e.g., $n_x = n > 0$, the asymptotic behavior of (4) is as that of the sample problem (2) shown previously, i.e.,

Asymptotic behavior

$$I_3^{n,0}(\varepsilon) \sim \frac{1}{\rho_3^2} \left(\frac{C_{-1}}{\varepsilon} + C_0 + \mathcal{O}(\varepsilon) \right),$$
 (5)

with coefficients satisfying

$$C_{-1} = \frac{1}{n}$$

$$C_0 = -\frac{2}{n^2} + \frac{1}{n} \left(\log(-\rho_3^2) - \sum_{j=1}^{n-1} \frac{1}{j} \right)$$

Linear extrapolation results $n_x > 0$, $n_y = 0$

	Numerical Integration (DQAGSE) ²			EXTRAPOLATION REL. ERR.		
INT.#	REL. ERR.	# EVALS	TIME (s)	C_{-1}	C_0	
6	3.29e-15	175,935	3.89e-02	1.21e-05	3.35e-04	
7	1.04e-15	203,115	4.52e-02	3.85e-07	1.53e-05	
8	4.65e-15	230,055	5.02e-02	8.11e-09	4.73e-07	
9	2.41e-15	249,885	5.40e-02	1.28e-10	1.06e-08	
10	5.00e-16	270,135	5.86e-02	1.27e-12	1.54e-10	
11	4.73e-15	283,995	6.21e-02	2.65e-13	3.04e-11	
12	1.56e-14	305,805	6.73e-02	8.51e-13	1.59e-10	
13	1.56e-14	363,915	8.11e-02	1.11e-12	3.19e-10	
14	7.42e-15	439,065	1.00e-01	2.13e-14	4.02e-11	

Table: Integration and extrapolation results using (DQAGSE)² for IR vertex (4)-(5) (real part), $n_x = 2$, $n_y = 0$, $p_3^2 = 100$; integ. error tolerances $t_r = 10^{-13}$ (outer), 5×10^{-14} (inner); Bulirsch sequence, integration #k corresponds to $\varepsilon = 1/b_{k+1}$; integration and extrapolation relative errors are given.

Asymptotics

When $n_x = n_y = 0$, J_3 behaves asymptotically as

Asymptotic behavior

$$I_3^{0,0}(\varepsilon) \sim \frac{1}{p_3^2} \left(\frac{C_{-2}}{\varepsilon^2} + \frac{C_{-1}}{\varepsilon} + C_0 + \mathcal{O}(\varepsilon) \right),$$
 (6)

with

$$C_{-2} = 1$$

$$C_{-1} = \log(-p_3^2)$$

$$C_0 = -\frac{\pi^2}{12} + \frac{1}{2}\log^2(-p_3^2)$$

In this case, the integrand of (4) is singular at both axes, while, for $n_x > 0$, the singularity occurs at the *y*-axis only. The adaptive numerical integration performs intensive subdivisions near the singularity.

Linear extrapolation results $n_x = n_y = 0$

	Numerical Integration (DQAGSE) ²			EXTRAPOLATION RELATIVE ERROR		
INT.#	REL. ERR.	# EVALS	TIME (s)	C_{-2}	C_{-1}	C_0
6	7.86e-14	642,945	1.29e-01	3.74e-05	2.69e-03	7.64e-02
7	1.48e-13	1,139,385	2.29e-01	1.17e-06	2.81e-03	1.05e-03
8	7.48e-14	1,160,595	2.34e-01	2.44e-08	8.07e-07	4.71e-05
9	1.21e-13	1,984,485	4.03e-01	3.76e-10	1.77e-08	1.49e-06
10	2.30e-13	1,613,175	3.29e-01	3.06e-12	1.44e-10	7.99e-09
11	1.86e-13	1,454,535	2.99e-01	1.21e-12	1.47e-10	2.74e-08
12	6.43e-14	2,928,930	6.07e-01	3.98e-12	3.81e-10	6.59e-08

Table: Integration and extrapolation results using $(DQAGSE)^2$ for IR vertex (4), (6) (real part), $n_x = n_y = 0$, $p_3^2 = 100$; Bulirsch sequence, integration #k corresponds to $\varepsilon = 1/b_{k+1}$; integ. error tolerances $t_r = 10^{-13}$ (outer), 5×10^{-14} (inner); integration and extrapolation relative errors are given.

Hypergeometric function

Hypergeometric functions appear in expressions of massless one-loop integrals, as given in [5] for the tensor integrals of one-loop vertex and box functions.

Euler integral representation of the hypergeometric function

$${}_{2}F_{1}(a,b,c;z) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_{0}^{1} \frac{t^{b-1}(1-t)^{c-b-1}}{(1-tz)^{a}} dt$$
 (7)

where $\mathcal{R}c > \mathcal{R}b > 0$, denotes a one-valued analytic function in the complex plane cut along the real axis from 1 to ∞ . The integral defines an analytic continuation of

Gauss series

$$F(a,b,c;z) = \sum_{k=0}^{\infty} \frac{\Gamma(a+k) \Gamma(b+k)}{\Gamma(c+k)} \frac{z^k}{k!}$$

which has |z| = 1 as its circle of convergence [1]. The integrand of (7) has end-point singularities when c - b - 1 < 0 and/or b - 1 < 0.

Hypergeometric function

Hypergeometric functions appear in expressions of massless one-loop integrals, as given in [5] for the tensor integrals of one-loop vertex and box functions.

Euler integral representation of the hypergeometric function

$$_{2}F_{1}(a,b,c;z) = \frac{\Gamma(c)}{\Gamma(b)\Gamma(c-b)} \int_{0}^{1} \frac{t^{b-1}(1-t)^{c-b-1}}{(1-tz)^{a}} dt$$
 (7)

where $\mathcal{R}c > \mathcal{R}b > 0$, denotes a one-valued analytic function in the complex plane cut along the real axis from 1 to ∞ . The integral defines an analytic continuation of

Gauss series

$$F(a,b,c;z) = \sum_{k=0}^{\infty} \frac{\Gamma(a+k) \Gamma(b+k)}{\Gamma(c+k)} \frac{z^k}{k!}$$

which has |z| = 1 as its circle of convergence [1]. The integrand of (7) has end-point singularities when c - b - 1 < 0 and/or b - 1 < 0.

Hypergeometric function: δ -extrapolation

We obtain numerical results using automatic integration and extrapolation,

δ -extrapolation

by replacing z by $z+i\delta$ and extrapolating to the limit of (7) as $\delta\to 0$. For the extrapolation, ${}_2F_1$ ($a,b,c;z+i\delta_\ell$) is computed for a sequence of δ_ℓ which tends to 0.

Linear method

Extrapolate

$$\sum_{k=0}^{n-1} C_k \, \delta_\ell^{\ k} = I(\delta_\ell) \tag{8}$$

for C_0 , where $I(\delta_\ell) \approx {}_2F_1(a,b,c;z+i\delta_\ell), \quad 1 \leq \ell \leq n$.

Hypergeometric function: Test results

- We use results from [6] (NCI) as a reference, for an integral of the form (7) with a = 1 + I, b = I + m, c = 1 + I + m + n, at z + i0 = 10 + i0.
- For these tests, l, m, n > 0 are integers and $b \ge 1$ as well as $c b \ge 1$, so that the integrand numerator is polynomial, thus without end-point singularities. We employ the general adaptive integrator DQAGE of QUADPACK using the Gauss-Kronrod rule pair with 10 Gauss and 21 Kronrod points. DQAGE lets the user select one of the Gauss-Kronrod pairs with 7-15, 10-21, 15-31, 20-41, 25-51 and 30-61 points as determined by an input parameter.

Hypergeometric function: Test results

- We use results from [6] (NCI) as a reference, for an integral of the form (7) with a = 1 + I, b = I + m, c = 1 + I + m + n, at z + i0 = 10 + i0.
- For these tests, l, m, n > 0 are integers and $b \ge 1$ as well as $c b \ge 1$, so that the integrand numerator is polynomial, thus without end-point singularities. We employ the general adaptive integrator DQAGE of QUADPACK using the Gauss-Kronrod rule pair with 10 Gauss and 21 Kronrod points. DQAGE lets the user select one of the Gauss-Kronrod pairs with 7-15, 10-21, 15-31, 20-41, 25-51 and 30-61 points as determined by an input parameter.

Linear extrapolation results for ${}_{2}F_{1}\left(a,b,c;z+i\delta_{\ell}\right)$

PARAMETERS							
	m	n	REAL/	EXTRAPOLATED	ESTIM. REL.	n	TOTAL INT.
			IMAG.	RESULT	EXTR. ERR.		TIME (S)
1	1	1	REAL	-1.453322029e-02	1.10e-11	11	1.73e-02
			IMAG.	1.507964474e-01	9.28e-12	10	2.91e-03
1	2	3	REAL	8.417767169e-02	8.12e-11	10	2.37e-03
			IMAG.	-2.290221044e-01	1.38e-11	10	3.10e-03
2	1	1	REAL	1.087664688e-02	2.22e-11	11	2.07e-02
			IMAG.	2.638937829e-02	3.61e-11	10	2.25e-03
2	3	4	REAL	-2.890568082e-02	3.04e-11	11	9.30e-03
			IMAG.	5.578978464e-02	2.37e-11	11	1.33e-02
3	1	2	REAL	-1.026721798e-02	7.53e-10	14	3.23e-02
			IMAG.	-5.654866773e-02	1.64e-09	13	3.84e-02
3	4	5	REAL	8.121358827e-03	2.21e-10	13	3.00e-02
			IMAG.	-1.274636264e-02	7.42e-11	11	2.55e-02

Table: Integration and extrapolation results for the hypergeometric function (7), a = 1 + I, b = I + m, c = 1 + I + m + n, at z + i0 = 10 + i0; using (DQAGE)² with rel. integ. error tol. of 5×10^{-14} and Bulirsch sequence for extrapolation to estim. rel. error 10^{-10} .

Hypergeometric function results – Remarks

- For the numerical tests of Table 4 we used $\delta_\ell = 1/b_\ell$ for an extension of the Bulirsch sequence with $b_\ell = 0.5, 0.75, 1, 1.5, 2, 3, 4, \dots$
- We compared the results of successive extrapolations to estimate the accuracy. Since the results in [6] are given to 10 digits, we performed extrapolations until the estimated relative error fell below 10⁻¹⁰, which is listed in Table 4 together with the extrapolation result, the order n of the linear system (8) and the total time accumulated in the integrations needed for the right hand side in each case.
- For (l, m, n) = (3, 1, 2), the best obtained estimated accuracy is reported; the obtained real part agrees with the exact value, whereas the imaginary part differs by 3×10^{-12} . In this case, the extrapolation was started at $\delta = 8$ ($b_0 = 0.125$) in view of the difficulty of the integration. For (l, m, n) = (3, 4, 5), the real part absolute error is 3×10^{-12} . All other results agree with [6] to the required accuracy. The integrations for the right hand sides were performed to a tolerated relative error of 5×10^{-14} .

Hypergeometric function results – Remarks

- For the numerical tests of Table 4 we used $\delta_{\ell} = 1/b_{\ell}$ for an extension of the Bulirsch sequence with $b_{\ell} = 0.5, 0.75, 1, 1.5, 2, 3, 4, \dots$
- We compared the results of successive extrapolations to estimate the accuracy. Since the results in [6] are given to 10 digits, we performed extrapolations until the estimated relative error fell below 10⁻¹⁰, which is listed in Table 4 together with the extrapolation result, the order n of the linear system (8) and the total time accumulated in the integrations needed for the right hand side in each case.
- For (I,m,n)=(3,1,2), the best obtained estimated accuracy is reported; the obtained real part agrees with the exact value, whereas the imaginary part differs by 3×10^{-12} . In this case, the extrapolation was started at $\delta=8$ ($b_0=0.125$) in view of the difficulty of the integration. For (I,m,n)=(3,4,5), the real part absolute error is 3×10^{-12} . All other results agree with [6] to the required accuracy. The integrations for the right hand sides were performed to a tolerated relative error of 5×10^{-14} .

Hypergeometric function results – Remarks Cont'd

- Nonlinear extrapolation by the ϵ -algorithm can be applied with a geometric sequence of $\delta_\ell = \beta^{\sigma-\ell}$, e.g., with $\beta = 1.5$, $\ell = 0, 1, \ldots$ and a starting point determined by σ . The ϵ -algorithm is able to extrapolate the (divergent) sequence $I(\delta_\ell) \approx {}_2F_1(a,b,c;z+i\delta_\ell)$ as $\delta_\ell \to 0$ to C_0 .
- However, linear extrapolation with a Bulirsch type sequence provides more efficient results (particularly) for the larger values of I, m and n.
- We note that the we successully used the same methods for the computation of the generalized hypergeometric function types of [6], related to ₃F₂ (a, b, c; z) and ₄F₃ (a, b, c; z), respectively. We obtained good convergence except for the case of nearly real z and |z| very large (e.g., z = 2000 + i10⁻¹⁵).

Hypergeometric function results – Remarks Cont'd

- Nonlinear extrapolation by the ϵ -algorithm can be applied with a geometric sequence of $\delta_\ell = \beta^{\sigma-\ell}$, e.g., with $\beta = 1.5$, $\ell = 0, 1, \ldots$ and a starting point determined by σ . The ϵ -algorithm is able to extrapolate the (divergent) sequence $I(\delta_\ell) \approx {}_2F_1(a,b,c;z+i\delta_\ell)$ as $\delta_\ell \to 0$ to C_0 .
- However, linear extrapolation with a Bulirsch type sequence provides more
 efficient results (particularly) for the larger values of *I*, *m* and *n*.
- We note that the we successully used the same methods for the computation of the generalized hypergeometric function types of [6], related to ₃F₂ (a, b, c; z) and ₄F₃ (a, b, c; z), respectively. We obtained good convergence except for the case of nearly real z and |z| very large (e.g., z = 2000 + i10⁻¹⁵).

Hypergeometric function results – Remarks Cont'd

- Nonlinear extrapolation by the ϵ -algorithm can be applied with a geometric sequence of $\delta_\ell = \beta^{\sigma-\ell}$, e.g., with $\beta = 1.5, \ell = 0, 1, \ldots$ and a starting point determined by σ . The ϵ -algorithm is able to extrapolate the (divergent) sequence $I(\delta_\ell) \approx {}_2F_1(a,b,c;z+i\delta_\ell)$ as $\delta_\ell \to 0$ to C_0 .
- However, linear extrapolation with a Bulirsch type sequence provides more
 efficient results (particularly) for the larger values of I, m and n.
- We note that the we successully used the same methods for the computation of the generalized hypergeometric function types of [6], related to ₃F₂ (a, b, c; z) and ₄F₃ (a, b, c; z), respectively. We obtained good convergence except for the case of nearly real z and |z| very large (e.g., z = 2000 + i10⁻¹⁵).

Vertex with one on-shell and two off-shell particles

For $p_1^2=0$, $p_2^2\neq 0$ and $p_3^2\neq 0$, $J_3\left(0,p_2^2,p_3^2;n_x,n_y\right)=\frac{1}{(4\pi)^2}\lim_{\varepsilon\to 0}I_{23}^{n_x,n_y}(\varepsilon)$ describes the case of one on-shell particle and two off-shell external legs [5], where

Integral

$$I_{23}^{n_{x},n_{y}}(\varepsilon) = \frac{\varepsilon \Gamma(-\varepsilon)}{(4\pi\mu_{R}^{2})^{\varepsilon}} \int_{0}^{1} dx \int_{0}^{1-x} dy \frac{x^{n_{x}}y^{n_{y}}}{(-(p_{3}^{2} - p_{2}^{2})xy - p_{2}^{2}y(1-y) - i0)^{1-\varepsilon}}$$
(9)
= $J_{3}(0,0,p_{3}^{2}; n_{x}, n_{y}) {}_{2}F_{1}(1,1-\varepsilon,2+n_{x}; \frac{p_{3}^{2} - p_{2}^{2}}{\tilde{p_{3}}^{2}}).$

IR divergence occurs when $n_x = n_y = 0$ or $n_x \neq 0$, $n_y = 0$ satisfying

Asymptotic behavior

$$I_{23}^{n_{\chi},n_{y}}(\varepsilon) \sim \frac{1}{p_{3}^{2}} \left(\frac{C_{-1}}{\varepsilon} + C_{0} + \mathcal{O}(\varepsilon) \right).$$
 (11)

ε, δ -extrapolation

- Both forms (9) and (10) exhibit possible IR divergence as indicated by the ε -parameter. Furthermore, δ -extrapolation may be warranted for the computation of the hypergeometric function in (10), and in view of a possible zero denominator $D^{1-\varepsilon}$ in (9).
- It is possible to obtain results using a type of ε, δ-extrapolation, if necessary in case of IR divergence and |z| < 1 for the hypergeometric function or D becomes 0 within the domain of integration.
- We obtained preliminary results with an ε, δ-extrapolation in case that D was set to become 0 inside of the integration region.

ε, δ -extrapolation

- Both forms (9) and (10) exhibit possible IR divergence as indicated by the ε -parameter. Furthermore, δ -extrapolation may be warranted for the computation of the hypergeometric function in (10), and in view of a possible zero denominator $D^{1-\varepsilon}$ in (9).
- It is possible to obtain results using a type of ε , δ -extrapolation, if necessary in case of IR divergence and |z| < 1 for the hypergeometric function or D becomes 0 within the domain of integration.
- We obtained preliminary results with an ε , δ -extrapolation in case that D was set to become 0 inside of the integration region.

ε, δ -extrapolation

- Both forms (9) and (10) exhibit possible IR divergence as indicated by the ε -parameter. Furthermore, δ -extrapolation may be warranted for the computation of the hypergeometric function in (10), and in view of a possible zero denominator $D^{1-\varepsilon}$ in (9).
- It is possible to obtain results using a type of ε , δ -extrapolation, if necessary in case of IR divergence and |z| < 1 for the hypergeometric function or D becomes 0 within the domain of integration.
- We obtained preliminary results with an ε , δ -extrapolation in case that D was set to become 0 inside of the integration region.

Conclusions

- Extension to box integrals: preliminary results have been obtained for scalar problem using nonlinear extrapolation (and sector decomposition for the integral approximation).
- Vertex and box levels are important for one-loop N-point functions as IR divergence (if present) appears on these levels after reductions.
- Much more testing needed on ε , δ -extrapolations.

Conclusions

- Extension to box integrals: preliminary results have been obtained for scalar problem using nonlinear extrapolation (and sector decomposition for the integral approximation).
- Vertex and box levels are important for one-loop N-point functions as IR divergence (if present) appears on these levels after reductions.
- Much more testing needed on ε , δ -extrapolations

Conclusions

- Extension to box integrals: preliminary results have been obtained for scalar problem using nonlinear extrapolation (and sector decomposition for the integral approximation).
- Vertex and box levels are important for one-loop N-point functions as IR divergence (if present) appears on these levels after reductions.
- Much more testing needed on ε , δ -extrapolations.

BIBLIOGRAPHY

Abramowitz, M., and Stegun, I. S.

Handbook of Mathematical Functions.

Dover Publications, Inc., New York, 1965.

BREZINSKI, C.

A general extrapolation algorithm.

Numerische Mathematik 35 (1980), 175-187.

BULIRSCH, R.

Bemerkungen zur romberg-integration.

Numerische Mathematik 6 (1964), 6–16.

FORD, W., AND SIDI, A.

An algorithm for the generalization of the Richardson extrapolation process. *SIAM Journal on Numerical Analysis 24* (1987), 1212–1232.

KURIHARA, Y.

Dimensionally regularized one-loop tensor integrals with massless internal particles, 2005.

hep-ph/0504251 v3.

KURIHARA, Y., AND KANEKO, T.

Numerical contour integration for loop integrals.

Computer Physics Communications 174, 7 (2006), 530–539. hep-ph/0503003 v1.

LEVIN, D., AND SIDI, A.

Two classes of non-linear transformations for accelerating the convergence of infinite integrals and series.

Appl. Math. Comp. 9 (1981), 175-215.

PIESSENS, R., DE DONCKER, E., ÜBERHUBER, C. W., AND KAHANER, D. K. QUADPACK, A Subroutine Package for Automatic Integration.

Springer Series in Computational Mathematics. Springer-Verlag, 1983.

SHANKS, D.

Non-linear transformations of divergent and slowly convergent sequences. J. Math. and Phys. 34 (1955), 1–42.

SIDI. A.

Convergence properties of some nonlinear sequence transformations. *Math. Comp. 33* (1979), 315–326.

WYNN, P.

On a device for computing the $e_m(s_n)$ transformation. Mathematical Tables and Aids to Computing 10 (1956), 91–96.