1-loop effects of MSSM particles in Higgs productions at the ILC

Yusaku Kouda, Tadashi Kon, Masato JimboA, Yoshimasa KuriharaB, Tadashi IshikawaB, Kiyoshi KatoC, and Masaaki KurodaD,

Seikei Univ., Chiba University of CommerceA, KEKB, Kogakuin Univ.C, Meijigakuin Univ.D

CPP2016
10 October 2016 in Hayama
OUTLINE

• Introduction (What)
• How (GRACE/SUSY)
• Results
• Summary
Introduction
SUSY indirect detection in Higgs production at the ILC

Graph 1

$e^- \rightarrow Z \rightarrow e^+$

Graph 7

$e^- \rightarrow W \rightarrow e^+ \nu_e \bar{\nu_e}$
Is the 1-loop effect of virtual MSSM particles statistically significant?
SUSY indirect detection in Higgs production at the ILC

Tree level total cross section

\[e^+ e^- \rightarrow \nu \bar{\nu} h \text{ (sum of 3 generation)} \]

\[e^+ e^- \rightarrow \nu_e \bar{\nu}_e h (W \text{ fusion}) \]

\[e^+ e^- \rightarrow Zh \]

\[e^+ e^- \rightarrow Zh \rightarrow \nu \bar{\nu} h \]
The cross section of Zh is large at low energy region.
The cross section of Zh is large at low energy region.

The cross section of $\nu\bar{\nu}h$ is large at high energy region.

Tree level total cross section

- $e^+e^- \rightarrow \nu\bar{\nu}h$ (sum of 3 generation)
- $e^+e^- \rightarrow v_e\bar{v}_eh (W$ fusion $)$
- $e^+e^- \rightarrow Zh$
- $e^+e^- \rightarrow Zh \rightarrow \nu\bar{\nu}h$
The cross section of Zh is large at low energy region.

The cross section of $v\bar{v}h$ is large at high energy region.

The accurate measurement of SM Higgs is expected.

SUSY indirect detection in Higgs production at the ILC
The cross section of Zh is large at low energy region.

The cross section of $\nu\bar{\nu}h$ is large at high energy region.

The accurate measurement of SM Higgs is expected.

At the same time, we want to focus on the effect of MSSM.
Selection of sets (Zh)

- Higgs mass: $m_h(\text{exp}) = 125.09 \pm 0.24$ GeV
- B physics constraint: $b \to s\gamma, B_s \to \mu\mu$
 \[a_\mu(\text{exp}) - a_\mu(\text{SM}) = (25.9 \pm 8.1) \times 10^{-10} \]
- muon g-2 constraint
- DM thermal relic density: (Planck data of Ωh^2)
- LHC direct search of sparticles

<table>
<thead>
<tr>
<th>light stop ≈ 300 GeV</th>
<th>heavy stop ≈ 1000 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>The DM abundance is explained by Co-annihilation of stau and LSP</td>
<td>set 1</td>
</tr>
<tr>
<td>The DM abundance is explained by Co-annihilation of stop and LSP</td>
<td>set 3</td>
</tr>
</tbody>
</table>

SuSpect2 (A.Djouadi, J.Kneur and G.Moultaka)
micrOMEGAs (G. Belanger, F. Boudjema, A. Pukhov, A. Semenov)

We have selected the set neutralino pair is \textbf{not} produced.

\((\tilde{\chi}_1^0 \geq 500\text{GeV})\)

We pay attention to the case

\textit{“only the effects of virtual MSSM particles are statistical significant”}

\textbf{Selection of sets (W fusion)}

\begin{align*}
\text{SM} & \quad e^+e^- \rightarrow \nu\nu h \\
\text{MSSM} & \quad e^+e^- \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 h
\end{align*}

(This study does not focus on this)
the set (W fusion)

Higgs (consistent with the observed mass)

ElectroWeak particles (Only these contribution don’t explain muon g-2)

QCD particles

<table>
<thead>
<tr>
<th>set 10</th>
<th>h</th>
<th>H</th>
<th>A</th>
<th>H⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>125.2</td>
<td>2000</td>
<td>2000</td>
<td>2002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(\chi'^{±}_{1})</th>
<th>(\chi'^{±}_{2})</th>
<th>(\tilde{\chi}^{0}_{1})</th>
<th>(\tilde{\chi}^{0}_{2})</th>
<th>(\tilde{\chi}^{0}_{3})</th>
<th>(\tilde{\chi}^{0}_{4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>mass</td>
<td>583.3</td>
<td>1376</td>
<td>552.8</td>
<td>588.2</td>
<td>614.8</td>
<td>1376</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(\ell_{1})</th>
<th>(\ell_{2})</th>
<th>(\tilde{\nu}_{\ell})</th>
<th>(\tilde{\tau}_{1})</th>
<th>(\tilde{\tau}_{2})</th>
<th>(\tilde{\nu}_{\tau})</th>
</tr>
</thead>
<tbody>
<tr>
<td>mass</td>
<td>601.5</td>
<td>651.7</td>
<td>646.9</td>
<td>589.5</td>
<td>662.5</td>
<td>646.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(\tilde{\nu}_{1})</th>
<th>(\tilde{\nu}_{2})</th>
<th>(d_{1})</th>
<th>(d_{2})</th>
<th>(\tilde{t}_{1})</th>
<th>(\tilde{t}_{2})</th>
<th>(b_{1})</th>
<th>(b_{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>mass</td>
<td>5000</td>
<td>5000</td>
<td>4800</td>
<td>5000</td>
<td>1798</td>
<td>2508</td>
<td>2200</td>
<td>2501</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\theta_{\tau})</th>
<th>(\theta_{b})</th>
<th>(\theta_{t})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.164</td>
<td>1.539</td>
<td>1.481</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(M_{1})</th>
<th>(M_{2})</th>
<th>(M_{3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>585.0</td>
<td>1370</td>
<td>2500</td>
</tr>
</tbody>
</table>

\(\mu=586, \tan \beta=30\)
How (GRACE/SUSY) (before and after the discovery of Higgs)
The system that can automatically calculate cross sections or decay widths in SM and MSSM

* GRACE/SUSY [tree version (opened to public)]

* GRACE/SUSY-loop [1-loop version(unopened to public)]

1. Feynman diagrams
2. Physical amplitudes
3. Phase space Integration
4. Event generation
5. Various Self-checks

We can check the validity of numerical calculation
Before the discovery of Higgs, GRACE have been used with Higgs mass as a free parameter.

Higgs mass was final free parameter in SM.

SM full 1-loop correction of $e^+e^- \rightarrow \nu\bar{\nu}h$ have calculated with using GRACE in 2003.

Denner et al., NPB660(2003)289
After the discovery of Higgs, GRACE is used with Higgs mass as a fixed parameter for the search of MSSM that have many free parameters. For example, in this way,

step 1, we can generate all diagrams.

\[e^+ e^- \rightarrow \nu_e \bar{\nu}_e h \]
full 1-loop MSSM diagrams • • • 13793 diagrams

step 2, we can select diagrams.

By selecting diagrams that WW fusion in internal line, they are reduced to 239 diagrams.

step 3, we can check whether a renormalization works well.

we have confirmed(self-check)
the cancelation of ultraviolet or infrared divergence

and

independence on the cut off energy between hard and soft photon

step 4, actual calculations
Results
(ZH,W fusion)
Angular distribution (1-loop level)

- θ is the Z generation angle.
- The 1-loop correction for the tree level is negative.
- The correction of MSSM for SM is positive.
MSSM 1-loop effect

- We have defined the correction ratio δ
- We have compared with the statistical error (assumed the luminosity that planned in the ILC).

H. Baer et al,

- The 1-loop effect is 11% in the entire region.
- The 1-loop effect for SM is larger than the error.
- The difference among sets is larger than the error.

$\delta_{\text{SUSY}} = \frac{\frac{d\sigma_{\text{SUSY 1-loop}}}{d\cos\theta} - \frac{d\sigma_{\text{SM}}}{d\cos\theta}}{\frac{d\sigma_{\text{tree}}}{d\cos\theta}}$

correction ratio ($\sqrt{s}=250$ GeV)

$\int L dt = 250 \text{fb}^{-1}$

δ_{SUSY} (%)
1-loop correction for the tree level is negative.
MSSM correction for SM is positive.
The correction of SM total cross section for the tree level is -37%.
The correction of MSSM total cross section for the tree level is -19%.
We have defined the correction ratio δ.

We have compared with Monte Carlo integration error.

The correction ratio is 15% in the entire region.

The 1 loop effect is larger than the error.

\[
\delta_{\text{SUSY}} = \frac{\frac{d\sigma_{\text{SUSY,loop}}}{dE_h} - \frac{d\sigma_{\text{SM}}}{dE_h}}{\frac{d\sigma_{\text{tree}}}{dE_h}}
\]

$\sqrt{s} = 500\,(\text{GeV})$
summary
We select sets that consistent with Higgs mass, B physics, DM relic density, LHC direct search of sparticles, and muon g-2(in Zh)

We have probed statistical significance at the ILC.

In W fusion calculation, We have considered a set neutralino is not produced, and investigate whether only one loop effect is statistically significant.

GRACE/SUSY is very Useful for the search of MSSM particles!!
back up
The part compared in the δ_{susy} canceled each other, because they are common in SM and MSSM.
Sfermion co-annihilation scenario in Bino Dark Matter

Stop that consistent with Higgs mass

Sfermion co-annihilation scenario in Bino Dark Matter

Stop that consistent with Higgs mass

micrOMEGAs (G. Belanger, F. Boudjema, A. Pukhov, A. Semenov)

Stop that consistent with Higgs mass

SuSpect2 (A. Djouadi, J. Kneur and G. Moultaka)
Sellection of sets (Zh)

- Higgs mass: \((m_h(\text{exp})=125.09 \pm 0.24 \text{ GeV})\)
- B physics constraint: \((b \rightarrow s\gamma, B_s \rightarrow \mu\mu)\)
- Muon g-2 constraint: \(a_\mu(\text{exp})-a_\mu(\text{SM})=(25.9 \pm 8.1) \times 10^{-10}\)
- DM thermal relic density: (Planck data of \(\Omega h^2\))
- LHC direct search of sparticles

Our sets have almost pure Bino DM (No mix with Higgsino or Wino)

Then, the stop1 or the stau1 mass are constrained (sfermion co-annihilation scenario)

<table>
<thead>
<tr>
<th></th>
<th>light stop</th>
<th>heavy stop</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tilde{\chi}_1^0)</td>
<td>(\cong 300 \text{GeV})</td>
<td>(\cong 1000 \text{GeV})</td>
</tr>
<tr>
<td>(\tilde{\tau}_1)</td>
<td>set 1</td>
<td>set 2</td>
</tr>
<tr>
<td></td>
<td>set 3</td>
<td>inconsistent with muon g-2 (LSP is too heavy)</td>
</tr>
</tbody>
</table>

The DM abundance is explained by Co-annihilation of stau and LSP

The DM abundance is explained by Co-annihilation of stop and LSP

G. Bélanger LAPTH-Annecy